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Overview

1 wish to describe - as derived from known traits of strong interactions
the likely thermodynamic properties of hadronic matter in two different
phases: the hadronic gas consisting of strongly interacting but individual
baryons and mesons and the dissolved phase of a relatively weakly inter-
acting quark-gluon plasma. The equations of state of the hadronic gas
can be used to derive the particle temperatures and mean transverse mo-
menta in relativistic heavy fon collisions while those of the quark-gluon
plasma are more difficult to observe experimentally. They may lead to re-
cognizeable effects for strange particle yields. Clearly, the ultimate aim
is to understand the behaviour of hadronic matter in the region of the
phase transition from gas to plasma and to find characteristic features
which will allow its experimental observation. More work is still needed
to reach this goal. This report is an account of my long and fruitful
collaboration with R. Hagedornﬂ_

The theoretical techniques required for the description of both phases
are quite different: in the case of hadronic gas a strongly attractive
interaction has to be accounted for, which leads to the formation of the
numerous hadronic resonances - which are in fact bound states of several
(anti) quarks. If this is really the case than our intuition demands that
at sufficiently high particie (baryon) density the individuaiity of such
bound state will be Tost. In relativistic physics in particular meson pro-
duction at high temperatures might lead to such transition already at mode
paryon density. As is currently believed the guark-quark interaction is o
modérate strenth allowing a perturbative treatment of the quark-gluor pla
as relativistic Fermi and Bose gases. As this is a very well studied tech
nique to be found in several reviewsz, we shall here present the relevant
results for the relativistic Fermi gas and restrict the discussion to the
interesting phenomenological consequences. Thus the theoretical part of
this report will mainly be devoted o the strongly interacting phase of
hadronic gas. We will also describe some experimental consequences for
relativistic nuclear collisions such as particle temperatures i.e. mean
transverse momenta and entropy.

As we will throughout of this work deal with relativistic particles, a



suitable generalization of standard thermodynamics is necessary
-and we follow the way described by Touschek 3). Not only is it
the mostdegant, but also by simple physical arguments the only
physical generalization of the concepts of thermodynamics to
relativistic particle kinematics. Our notation is such that
fi=c=k=1; the inverse temperature g and volume V are
generalized to become four vectors:

E—p" = (P", Br=mu; w.ut=4

LI (e A = A pm. . 4 (1)
T (T Ef) =t R

V= V=V, V) = Vwr wawr=t

" u

are the four velocities of the total mass, of the
u n
=w.

where «¥, v¥, w

thermometer and of the volume, respectively. Usually aM> = v

We will often work in the frame in which all velocities have a
timelike component only. In that case we shall often drop the Lorentz
index 'u', as we shall do for the arguments V = Vu’ 8 =8 of
different functions. ’

An attentive listener may already ask himself how the approach out-
lined here can be reconciled with the concept of quark confinement.

We now will therefore explain why the occurrence of the high temperature
phase of hadronic matter - the quark-gluon plasma - is still consistent

with our incapability to liberate quarks in high energy collisions.
It is thus important to realize that the currently accepted theory
of hadronic structure and interactions, quantum chromodynamics
supplemented with its phaenomenological extension: the MIT bag model
allows the formation of large space domains filled with (almost) free
quarks. Such a state {s expected to be unstable and to decay again

3)

into individual hadrons, following its free expansion. The
mechanism of quark confinement requires that all quarks recombine
to form hadrons again. Thus the quark-gluon plasma may be only

a transitory form of hadronic matter formed under special con-
ditions and therefore quite difficult to detect experimentally.

We will recall now the relevant postulates and results that
characterize the current understanding of strong interactions in
quantum chromodynamics (QCD). The most important postulate is
that the proper vacuum state in QCD is not the (trivial) per-
turbative state that we (naively) imagine to exist everywhere
and which is Tittle changed when the interactions are turned
on/off, In QCD the true vacuum state is believed to have a
complicated structure which originates in the glue ('photon')
sector of the theory. The perturbative vacuum is an excited
state with an energy density B above the true vacuum. It is

to be found inside hadrons where perturbative quanta of the
theory, in particular quarks, can therefore exist. The occurrence
of the true vacuum state is intimately connected to the glue-
glue interaction; uniike QED these massless quanta of QCO ~
also carry a charge - colour - that is responsible for the
quark-quark interaction.

In the above discussion, the confinement of quarks is a natural
feature of the hypothetical structure of the true vacuum. If it
is, for example, a colour superconductor, then an isolated charge
cannot occur. Another way to look at this is to realize that a
single coloured object would, according to Gauss' theorem, have
an electric field that can only end on other colour charges. In
the region penetrated by this field, the true vacuum is displaced,
thus effectively rajsing the mass of a quasi-isolated quark by

the amount B'Vfie]d'
Another feature of the true vacuum is that it exercises a pressure
on the surface of the region of the perturbative vacuum to which
quarks are confined. Indeed, this is just the idea of the original



6)
MIT bag model®’. The Fermi pressure of almost massless 11ght quarks

i§ in equilibrium with the vacuum pressure B. When many quarks are
combined to form ga giant quark bag, then their properties inside
can be obtained using standard methods of many-body theoryz) In
particular, this also allaws the inclusion of the effect of ;nternal

excitation through a finite temperature and trough a change in
the chemical composition.

A further effect that must be taken into consideration is the
quark-quark interaction. We shall use here the first order
contribution in the QCD running coupling constant « (q2)= 92/4w.
However, as as(q ) increases when the average momenzum exchanged
between quarks decreases, this approach will have only Timited
validity at relatively low densities and/or temperatures. The
collective screening effects in the plasma are of comparable order
of magnitude and shoyld reduce the importance of perturbative

contribution as they seem to reduce the strength of the quark-
quark interaction, :

from this general description of the hadronic plasma it is
immediatly apparent that at a certain value of temperature and
‘b?ryon number density the plasma wust desintegrate into indi-
vidual hadrons - clearly to treat this process and the

ensuing further nucleonisation by perturbative QCD methods is
impossible. It is necessary to find a semiphenomenolagical method
for the treatment of the thermodynamic system consisting of a

9as of quark bags. The hadronic gas phase is characterizad by those reactions

between individual hadrons that lead to the formation of new
particles (quark bags) only. Thus one may view7’8’g) the hadronic
gas phase as being an assembly of many different hadronics resonances
their number in the interval (mz, m +dm2) being given by the mass-

) 2 2
spectrum: T(m", b) dn“. Here b - the baryon number-is the only discrete

quantum number to be considered at Present. A11 bag-bag interaction
15 contained in the mutyal transmutations from one state to another.

Thus the gas phase has the characteristic of an infinite
component ideal gas phase of extended objects. The quark

bags having a finite size force us to formulate the theory of
an extended, though otherwise ideal multicomponent gas.

It is a straight forward exercise, carried through in the be-
ginning of the next section, to reduce the grand partition
function Z to an expression 1in terms of the mass spectrum
T(mz,b). In principal an experimental form of =( mz,b) could
then be used as an input. However, the more natural way is to
introduce the statistical bootstrap mode17) which will provide
us with a theoretical v - in consistency with assumptions and
approximations made in determining Z.

In the statistical bootstrop the essential step consists in the
realization that a composite state of wany quark bags is in itself
an “"elementary" bagl’lo). This leads directly to a nonlinear
integral equation for t. The ideas of the statistical bootstrop
have found a very successfull application in the description of
hadronic reactionsll) in the past decade. The present work is an

extensionl’g'lz) and applicationl’la) of this method to the ease

of a system containing any number of finite size hadronic clusters with

their baryon numbers adding up to some fixed number. Among the most
successfull predictions of the statistical bootstrap we record here

the derivation of the 1imiting hadronic temperature and the exponential

growth of the mass spectrum.

We see that the theoretical description of the two hadronic phases -
the individual hadron gas and the quark-gluon plasma is consistent
with observations and with the present knowledge about

elementary particles. What remains is the study of the possible
phase transition between thase phases as well as its observation.
Unfortunatly we can argue that in the study of temperatures and
mean transverse momenfa of pions and nucleons produced in nuclear
collisions practically all information about the hot and dense
phase of the collision is lost, as most of the emitted particles
originate in the cooler and more dilute hadronic gas phase of



matter. In order to obtain reliable information on quark matter we must
presumably perform more specific experiments. We will briefly point out
that the presence of numerous s quarks in the quark plasma suggests, as
a characteristic experiment, the observation of A hyperons.

We close this report showing that in nuclear collisions, unlike
p-p reactions, we can use equilibrium thermodynamics in a large volume

to compute the yieild of strange and antistrange particles. The latter (e.g.ﬁ )

might be significantly different from what one expects in p-p collisions
and give a hint about the properties of the quark-gluon phase.

2) _Thermodynamics of the Gas Phase and the Statistical Bootstrap Model

Given the grand portition function Z( 8, V, A) of a many body system
all thermodynamic quantities can be determined by differentiation of
In Z with respect to its arguments; A is the fugacity introduced to
conserve a discrete quantum nunber, here the baryon number. The conser-
vation of strangeness can be carried through in a similar fashion lea-
ding then to a further argument, Ago of Z. Whenever necessary we will
consider Z to be implicitly dependent on Ag-

The grand partition function 1s a Laplacetransform of the level density
a(p> ¥, b) where Py is the fourmomentum and b the baryon. number of the
many body system enclosed in the volume V

2RV, ‘))1’21')\5 _fs PRASY Y, PY Y . (2)

We recognize the usual relations for the thermodynamic expectation values
of the baryon number:

Zb> =A;%MZ(/;,\67\),

(3a)
and the energy-momentum fourvector;
-2
(FD =g WZ(E V) (ab)

that follow from the definition (2).

The theoretical problem is to determine g{p, V, b) in terms of known

quantities. Let us suppose that the physical states of the hadronic

gas phase can be considered asAbeing build up from an arbitrary number

of massive objects,hence called clusters,characterized by a mass spectrum

T(mz, b); {(mz, b) dm2 is the number of different elementary objects

(existing in nature) in the mass intervall (mz, m2 + dmz) and having the

baryon number b. As particle creation must be permitted, the number N

of constituents is arbitrary, but constrained by fourmomentum conser-

vation and baryon conservation. Neglecting quantumstatistics (it can

be shown that fogﬂT > 40 MeV Boltzmann statistics is sufficient) we have
= | N

ocp, Vb)) =A’%o'§;$§"(r—ép;)%}§k(!r£ b;) )

N
28Fl (o b ) dYp
1=Tf TSC TUipT, b )R,




The sum over all allowed partitions of b into different b.I is included.
Z\ -is the volume available for the motion of the constituents - it
differs from V if the different clusters carry their proper volume Vci:

N M
A)": vl‘*_g- Vct . (5)

The phase space volume used in Eq. (4) is best explained by considering
what happens for one particle of mass m, in the restframe of 8, Bu:

j‘vﬁ‘ MA&‘/"” dolp-m?) = A, Sg;_s 6:'3‘4_""/-‘»

(272
&
= Aﬁlo ?%i;g%i‘ P<;2 (.v"‘ ,-r' ) ©

The density of states, Eq. (4) implies that the creation and absorption

of particles in kinetic and chemical equilibrium is Timited only by
fourmomentum and baryon number conservation. These processes represent

the strong hadronic interactions which are dominated by particle produc-
tions. r(mz, b) contains all participating elementary particles and their
resonances. Some remaining interaction is here neglected or as we do not
use the complete experimental T(ng b) it may be considered as being

taken care of by a suitable choice of . The short range, repulsive forces
are taken into account by the introduction of the proper volume V of hadro-
nic clusters.

One more remark concerning the available volume A is here in order:
if V were considered to be given and an independent thermodynamic
guantity, than in £q(4) a further, build-in restriction is limiting
the sum over N to a certain Nmax’ such that the available volume A,
Eq(5), remains positive. However, this more conventional asumption
of V as the independent variable would signif%cantly obscure our
mathematical formalism. It is important to realize that we are free
to select the available volume A as the independant thermodynamic
variable and to consider V as a thermodynamic expectation value to
be computed from Eq(5):

VA VP> = AR VAR AN @

Here <V2> s the average sum of proper volumes of all hadronic clust
contained in the system considered . As atready discussed e
the standard quark bag leads to the Proportionality betwee; th

cluster volume and hadron mass. Similar arguments within the )
bootstrap mudelg’lo) as for example discussed in the preceedin

lecture of R. Hagedorn also lead to i

< u) B < H >
Ve P (8.2,1)>/4B (8)

4B is @t this point arbitrary)
\ energy density of isolated h
in the quark bag model5). werens

Si
nce our hadrons are under Pressure from neighbours in hadronic

matter - we have in principle to take instead of 4B the energy density of
a quark bag exposed to a pressure P (see Ea(54) below)

Ebag =48 + 3P

Combining eqs .(7), (8), (9 ]
<E>/<V> (8), (9) we find with ¢(g , a, A) = <3pg>/‘<vu> -

ALlvVgan =4 ~'s(/s,A,$\)[(QB+3P(,s,A,G\)) (9)

A% we shall see, the pressure p in the hadronic matter never
rises above 0.48. Consequently the inclusion of P above - the
compression of free hadrons by the hadronic matter by about 10% -
may be omitted for now from further discussion. However we note
that both € amdP will be computed as 1n Z becomes avaiT;ble h
Eqf9) is an implicit equation for A/<V>, e

It is important to record that expression (9) can approach zero
only when the energy density of hadronic 9as approaches that of
matter consisting of one big quark bag: ¢ + 48, p . 0. Thus the
density of states; Eq,(4), together with the choice of A as a

thermodynamic variable is a consistent -physical choice only y

to this point. Beyond we assume that a description in terms ofp
interacting quarks and gluons is the proper physical description

1



A11 these remarks in our mind, we now consider the available velume &
as a thermodynamic variable which by definition is positive. Inspec-
ting Eq. (4) again we recognize that the level density of the extended
objects in volume <V> can be interpreted for the time being as the
level density of point particles 1n a fictitious volume A.

o(p, V, b) = “pt(p’AJL) (10)

hence this 1s also true for the grand canonical partition function,
Eq. (2):

2(8: Vs ) = Zy(Bs 8, 2). (11)

Combining Eq. (2) and (4) we also find the important relation
b 2A ~ 2 —ﬂ 9

(A = ! __CE b) e /"‘} ol £ 12

& ,A,“) L='~$ S @Ds 4 (F’ ) (12)

This result can only be derived when the sum over N in Eq. (4) extends
to infinity, thus as long as A/ <V>, Eq. (9), remains positive.

In order to Eontinue with our description of hadronic matier we must
now determine a suitable mass spectrum t to be inserted into Eq. (4).
For this we now introduce the statistical bootstrap model.

The basic idea is rather old, but has undergone some development more
recently making it clearer, consistent and, perhaps, more convincing.
The details may be found in Ref. (9) and the references therein. Here
a simplified naive presentation is given. We note, however, that our
present interpretation is nontrivially different from that of Ref. (9).

The basic postulate of statistical bootstrap is that the mass spectrum
r(mz, b), containing all the "particles": elementary, bound states and
resonances (clusters) is generated by the same interactions which we see
at work if we consider our thermodynamical system. Therefore if we were

to compress this system until it reaches its natural volume V (m, b),

then it would itself be almost a cluster appearing in the mass spectrum
r(mz, b). Since o(p, A, b) and T(pz, b) are both densities of states (with
respect to different measures: d4p and dmz) we postulate

L Z(p2L) . const

Ctp A,b) <v>-—>\/(vnb') (13)

where = meams “corresponds to " (in some way to be specified). As
o(p,a,b) is (see (4)) the sum over N of N - fold convolutions of

T, the above "bootstrap postulate” will yield a highly non-linear
integral equation for <.

The bootstrap postulate (13) requires that v should obey the
equation resulting from replacing ¢ in Eq. (4) by some expression

containing t linearly and by taking 1nto account the volume con-
dition (7), (8).

We cannot simply put V = Vc and A = 0, because now, when each cluster
carries its own, dynamically determined volume, A loses its original

meaning and must be redefined more precisly. Therefore, in Eq (4)
we tentatively replace;

SLPJVML)%T:O@;_EYF"“") t203’/3 Z(esb)

24ps o (ol b:)=2 Z\éCM:J::)‘P..
s BRI =g T

(14)

Fi Lﬁ)" (angqigjrlfl EFJ

Next we argue that the explicit factors m2 and m arise from the dynamics

and therefore must be-absorbed into r(p b ) as d1mens1on1ess factors*
(m /m ). Thus

so ¥, b) =-‘:->E? 343 CP§$)=H2(P§6)

280 pprb)=> 20 2ip2 b)=HTtR2k:) (5

- 2 "‘c:z
(2m)34B

*) Here is the essential difference to Ref. 9 where another choice was made.
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where either H or m_ may be taken as a new free parameter of the model, to
be fixed later (if m  is taken, then it should be of the order of the
"elementary masses" appearing in the system, e.g., somewhere between m_ and
Ty in a model using pions and nucleons as elementary input). Finally: if
clusters consist of clusters which consist of clusters, which ..., this
should end at some "elementary" particles (where what we consider as ele-
mentary is fixed by convention). The bootstrap equation (BE) reads then
inserting Eq. (15) in Eq. (4)

Heptty = Hg, dtpr mE) +

= | N N . N
*n;::;. N S‘.l"cP ",1:-, F’) az'wgs " CL-‘_Q'_' b, )EH tip3b; ),lk (16)

Clearly, the bootstrap equation (16) has not been derived; we have made

it more or less plausible and state it as a postulate. For more motivation
see Ref. 9. In words the bootstrap equation means: the cluster with mass
/p2 and baryon number b is either elementary (mass: ﬁb, spin isospin multi-
plicity: gb) or it is composed of any number N 2 2 of subclusters having
the same internal composite structure described by this eqguation. The

bar aver ﬁb indicates that one has to take the mass, which the "elementary
particle" will have effectively when present in a large cluster: e.g.

in nuclear matter m =m - < Eg, > and my = 925 MeV). That this must be
s0, becomes obvious if one imagines Eq. (16) solved by iteration (the
interation solution exists and is the physical solution): then HT(ﬁ%b)
becomes in the end a complicated function of pz, b, alT_ﬁb and all 9+

In other words: in the end a single cluster consists of the "elementary
particles"; as these are all bound into the cluster, their mass m should
be the effective mass, not the free mass m. This way we may include a small
correction for the long-range attractive meson exchange by choosing ﬁN =

m - 15 MeV.

tet us make a brief excursion to the bag model at this point: there the
mass of a hadron is computed from the assumption of an isolated particle
(= bag) with its size and mass being determined from the equiiibrium

-2

between the vacuum pressure B and the internal Fermi pressure of the
(valence) quarks. In a hadron gas this is not true as a finite pressure
is exercised on hadrons in matter. We find after a short calculation
the pressure dependence of the bag model hadronic mass: ’

M(P) = M(0) W“ = M) (1 +3/32p/B)2 + ...)  (17)
We have already noted that the pressure never exceeds .48 in the hadronic
gas phase. Hence we see that the increase in mass of constituents {quark
bags) in the hadronic gas never exceeds 1.5 % and is at most comparable wit
the 15 MeV binding in m. In general P is about .18 and-the pressure effect
may be neglected.

Thus we can consider the 'input' first term in Eq. (16) as being fixed

by pions, nucleons and whenever necessary by usual strange members of
meson and baryon multiplets. Furthermore we note that the bootstrap eguatio
(16) makes use of practically all the same approximations as our des-
cription of the level density, Eq. (4). Thus the solution of Eq. (16) is
particularly suitable for our use.

We solve the BE by the same double Laplace transformation which we used
before Eq. (2): define

te‘!&la )= Setﬁf‘?ki? Qhuz,bs\a(rl-mﬁ )‘E'*F =

bz-w

D9 b — -—
- ‘mHTa{:-u A 96 ™ K, (%lT) .

$la)= [ APL ¥ HTEin)dlp

e

Once the set of input particles (ﬁb, 9} is given, yng, A) is a known
function, while #(g, 1) is unknown. Applying the double Laplace trans-
formation to the BE, we obtain

SN = M) e BN BN - 1 (19)



This implicit equation for ¢ in terms of { can be solved without regard to
the actual B - A dependence. Writing

GW%=@%&)

(20)°
P=2G- e+ 1
we can draw the curve tP(G) and then invert it graphically to obtain G(p) =
(8, 1) (see fig. 1). G({f) has square root singularity atlp =tp, = n(4/e);

beyond that value, G({P) becomes complex. Apart from this graphical selution,
other forms of solutions are known.

-] & I‘V;_
G(L(J)= Zsh\?“ = )__ 'S & (lfo-lf)g (integral representation) (21)
n=I h=D
= ! ! "\\ ! Fig. 1
> - A Y -1 . -
Sk N | Bootstrap function G({) -
\ | the dashed 1ine represents
| | the unphysical branch. The
o5k | root singularity is at
i ' | % = in(4/e) = 0.3863.
" E?‘: i
- | (o)
1 1 1 L]
0 Q0 Q20 030 040 ¢ ,

n
The expansion in terms of (\ou.tf))!%as been used in our numerical work (12 terms
yield a solution within computer accuracy) and the integral representation
will be published elsewhere.

Henceforth, we consider ¢(8, 1) = G(¢{) to be a known function of (p(8, 1).
Consequently, r(mz, b) is also in principle known. From the singularity at

l.? =IP° it Folhms1 that T(m » b) grows, for m >> myb, exponentially -m -3

exp(m/To) In some weaker form this has been known for a long t1me7’ 15, 16

" 3. The Hot Hadronic Gas

The definition of #(B, 1) Eq. (18) in terms of the mass spectrum, allows

us ta write a very simple expression for anZ in the gas phase (passing
now to the restframe of the gas).

» ¥y = s By a - 2 22
anZ(g, V, 1) znzpt(s A, A) 2“) 5—- 8(8, A) (

© We recall that Egs. (9) and (19) define (implicitly) the quantities &), fin
terms of the physical variables V, 8, A.

Let us now introduce the energy density ¢
particles as

1:((9 V=7 (—a(gﬁm Zfﬂ:({’-1 0’4\)) Qz?;ljs” ;},z {%a) (23

which will turn out to be quite helpful as it is independent of A. The
proper energy density is

pt of the hypothetical pointlike

<V> (24

while the pressure follows from

P(f:.mw =TLaZRV,N) =T Zpe (5,4,2) (55

2’T‘ 2. e A 2%
Similarly we find for the baryon number density
<b> _.__L}_,, \j \
Vi d) = 2vs 2y VRt (A D) (27

with

Q9
Vpe(pA) = 25 W Zoe = ¥y ﬁﬂgp—é((sﬁ) (25




From Egs. (23) - (28) the crucial role Played by the factor A/<V> becomes
apparent. We nate that it is quite straight forward to insert Eq. (24),
{25) in Eq. (9) and solve the resulting quadratic equation to obtain a/<v>
as an explicit function of €pt and Ppt' First we record the 1imit P << B:

AJLV> = |~ EEAVYB = (1+ & (£,2)/48) L (29)

while the correct expression is:

ofevye - 22 - 25 [TB (1 e gm
22

ERe 3P 3Rt £

The last of the important thermodynamic quantities is the entropy S. By
differentiating Eq. (25) we find

3% nZ = 9% /3‘P<V> = Pev> —T:)%('FZ V)) (31)

Considering Z as function of the chemical potentiail:

Z{E N =Z(p,Y, eMP)=Z (B, p)= an(/g,a,/.)(sa

we find

22 = Blalisbp) --Eepchs o

with E being the total energy. From Eq. (31) and (33) we find the 'first
law' of thermodynamics to be

E = -P<V> + TJ?T (P <v>) +Iu,<b> (34a)

Now quite generally

E = =P<V> + TS + u<b>, (34b)
so that 5
S = (P(B, A, u)<V(g, A, > (35)
JdT
oD
Egs. (25), (33) now allow us to write
S =;)‘9T (P<V>) = an Z (T, o, u) + E 20 (36)

The entropy density in terms of the already defined quantities is therfore

A= S/<V> = Pre-w (37
T
We'shall now take a brief look on the quantities: P, €, v, A/<V>. They can
be written in terms of 208 2(8, 1) and its derivatives. We note that :

[Ea. (20)]

G(p) P
;Eé qg!ks’i‘) = .szii;-- é;Fa; (38

and that 260 - (¢, -) /2 near top = @, = an(t/e), see fig. 1.

Hence at CP==QL we find a singularity in the point-particle quantities

pt® Vpts pr. This implies that all hadrons have coalesced into one large
cluster; namely, from Eqs. (24), (26), (27) and (29) we find

e = 4B
P >0 (39
a/<V> > Q

We can easily verify that this is correct by establishing tﬂé average numbe
of clusters present in the hadronic gas. This is done by introducing an
artificial fugacity ?N in €q. (4) in the sum over N - where N is the
number of clusters: Denoting by Z(%) the associated grand canonical par-
tition functions Eq. (22) we find

9 £ = o 24 2 Fica)

N> =g 2 (3,405 = - =3 (40
” %9% t [ﬁl ,ﬁ:?) ?= @SH D/S % ‘

which leads to the useful relation

P<V¥> = <N>T (41
Thus as P<¥> + 0 so must <N>, the number of clusters, for finite T. We
record the astonishing fact that the hadron gas phase obeys an 'ideal’
gas equation - of cours <N> is not constant as for a real ideal gas but

a function of the thermodynamic variables.

The boundary given by

PlaA)= P = Unltfe) (42




thus defines a critical curve in the 8-A plane. Its position depends,

of course, on the actually given form of (8, 1), i.e., on the set of “input®
particle {ﬁh, g} assumed and the va]:e gf fhe constant H Eq. (15) . In

the case of three elementary pions (v = = ) and four elementary nucleons
(spin @ isospin) and four antinuclieons, we have from Eq. (18):

PN =2xHT $3myg K, (Melr) 4 (265) Wy K, (FvA )} (43)

and the condition (42), written in T and u = Tanr yields the curve shown
in fig. 2, the "critical curve". For u = 0 the curve ends at T = T0 where
T., the "1imiting temperature of hadronic matter', is the same as that
0 7,9, 15, 16) _, 2 -3 /
appearing in the mass spectrum’® 7> °°° ™m", b) ~ m "~ exp(m/T,) {for

m>> me).

Fig. 2

The critical curve correspon-
ding to @(T, u) = @, in the
u - T plane. Beyond it the
usual hadronic world ceases

our theory is not valid,
because we neglected Bose-
Einstein and Fermi-Dirac -sta-
tistics.

Hadronic

Phase

1 1
0 50 100

|5|0 T(Mev)

The value of the constant H in Eq. (15) has been chosen13 to yield T, = 190 MeV.
This apparently large value of To seemed necessary to yield a maximal average
decay temperature of the order of 145 MeV as required by Ref. 17. (However
hence a new value of the bag constant induces a change™ to a lower value

of T, = 180 MeV). Here we use:

H = 0.728 Gev™?
Ts = .19 GeV . (43)
m, = 0.398 GeV (when B = (145 MeV)"

to exist. In the shaded region

where the value of my 1ies, as expected, between m and my [}m“mN)llz = 0.36 Ge

The critical curve limits the hadron gas phase; by approaching 1t, all

hadrons dissolve into a giant cluster, which 4s not, in our opinion, a

hadron solidl 3 we rather would prefer to identify it with a quark-gluon plasms
Indeed, as the energy density along the critical curve is constant (= 4B),

the critical curve can be attained and, if the energy density becomes >48,

we enter into a region which cannot be described without making assumptions
about the inner structure and dynamics of the "elementary particles®

{m p> 9p) - here pion and nucleon - entering into the 1pput function (8, 1).
Considering pions and nucleons as quark-gluon bags leads naturally to

this interpretation.

4. The Quark~Gluon Phase

We now turn to the discussion of the region of the strongly interacting matter
in which the energy density would be equal or higher than 4B. As a basic
postulate we will assume that it consists of - relatively weakly - inter-
acting quarks. Only u and d flavours shall be first considered as they can
easly be copiously produced at T = 50 MeV. Again the aim is to derive the
grand partition function Z. This is a standard exercise; for the massless quark
Fermi gas up to first order in the interactionl’z‘12 the result is

2y (002 25 @2 [0~ E (4 bty +Fepy)
(1-§edsyzmey
1T zfz;‘

valid in the limit mq < Tknxq.

Here g = (2 s +1) (2 1+ 1) C = 12 counts the number of the components of
the quark gas, and Aq is the fugacity related to the quark number. As each
quark has baryon number 1/3, we find

}\q3 =X = e].l/T (45)

whera ), as before) allows the conservation of the baryon number.



Consequently : ]
. (46)

The glue contribution is
grt -3
Zy (3 2)= Vs A (1-5F).

We notice the two relevant differences with the photon gas: (i) the occurence
of the factor eight assaciated with the number of giuons; (i1) the glue-glue
interaction as gluons carry

(47)

coulour charge.

Finally, let us introduce the vacuum term which accounts for the fact that
the perturbative vacuum is an excited state of the 'true' vacuum which has
been renormalized to have a vanishing thermodynamic potential, f = -B~'zn2.
Hence in the perturbative vacuum:

wnZ =

vac ~8BY

(48)
This Teads to the required positive energy density B within the volume
occupied by the coloured quarks and gluons and to a negative pressure on the
surface of this region. At this stage, this term is entirely phenomenological
as discussed above. The equations of state for the quark-gluon plasma are
easily obtained by differentiating

(49)

anZ = 4nZ, + ARZ_, + Z"Zvac

q g

with respect to 8, A and V. The energy, baryon number density and pressure
are respectively:

= /,.QMZ

B} y[_“'—s)(qg b“fg Tr-’-L“ZA) (50)
U3 B T )
(51)

= 3%‘ = 2T [(,_z«)(.z.w;\,»'fr M)]

P= TT—.
= 2T 01~ 2%y L83 + 2, 0210)
+ (-2 i?Trz' 4

(52)
IS‘.L;

2 Tr-) ) h

Let us first note that for T << p and P =

tends to

0 the baryon chemical potential

Y
=1010MeV [, Bhstl](s2

pe= 3= (- "‘:h)

which assures us that interacting cold quark matter is an excited state of
nuclear matter. We have assumed that except for T there is no relevant
dimensional parameter - e.g., quark mass m, or the quantity 5 which enters
into the running coupling constant us(qz). Therefore the relativistic relation
between the energy density and pressure: ¢ - B = 3(P + B) is preserved which
leads to

= 1/3(e - 48) (54)

a relation we have used occasionally before (see Eg. (9)).

From Eq. (54) it follows that when the pressure vanishes, the energy density
is 4B, independent of the values of u and T which fix the 1ine P =

This behaviour 1s consistent with the hadronic gas phase. This may be used
as a reason to choose the parameters of both phases in such a way that both
1ines P = 0 coincide; we will return to this point again below. Far P > 0

we have ¢ > 4B - we recall that in the hadronic gas we had 0 < & < 4B.
Thus, above the critical curve of the u - T plane we have the quark-gluon
plasma exposed to an externail force.

In order to obtain an idea of the form of the P = 0 critical curve in the

p - T plane for the quark-gluon plasma, we rewrite Eq. (52) using Egs. (45)
and (46) for P = 0:

U=Wafr) o2 o oad EL'TﬁHTj[' S 4
B LT ¥ 75 LI-§52) - (B ) €] (55)

Here, the last term is the glue pressure contribution - (if the true vacuum
structure is determined by the glue-glue interaction, then this term could



. be modified significantly). We find that the greatest lower bound on tempera-

ture Tq at v = 0 is about

‘ T, - Y4 = 145 - 190 Mev (56)
This result can be considered to be correct to within 20 %. Its order of
magnitudﬁ is as expected. Taking Eq. (55) as it is, we find for ag = 1/2

Tq = .831;:. Omitting the gluon contribution to the pressure we find

Tq = .98" 7. It is quite likely that with the proper treatment of the glue-
field, of the plasma corrections and with larger Bl/4 ~ 190 MeV, the desired
value of Tq = T, corresponding to the statistical bootstrap choice follows.
Furthermore, allowing some reasonmable T - u dependence of o we then can
easily obtain an agreement between the critical curves.

However, it is net necessary that both critical curves coincide, though

this would be the preferable case. As the quark plasma is the phase into
which individual hadrons dissolve, it is sufficient if the quark plasma
pressure vanishes within the boundary set for non-vanishing positive
pressure of the hadronic gas. It is quite satisfactory for the theoretical
development that this is the case. In fig. 3a a qualitative picture of both
P = 0 lines is shown in the u - T plane. Along the dotted straight line at
constant temperature we show in fig, 3b the pressure as a function of the
volume ({a P-V diagram). The volume is obtained by inverting the baryon den-
sity at a constant fixed baryon number.

<b>
v

(57)

The behaviour of P (V, T = const.) for the hadronic gas phase is as described
before in the statistical bootstrap model. For large volumina, we see that

¢ falls with rising V. However, when hadrons get close to each other so

that they form larger and larger lumps, the pressure drops rapidly to zero;
the hadronic gas becomes a state of few composite clusters (internally al-

ready consisting of the quark plasma). The second branch of the P (V, T = const.

line meets the first one at a certain volume V = V..
The phase transition occurs for T = const. in fig. 3b) at a vapour pressure
Py obtained from the conventional Maxwell construction - the shaded regions
in fig. 3b) are equal. Between the valumina V; and V, matter coexists in the

Fig. 3a The critical curves (P = 0) of the two models in the T - u pla
(qualitatively). The region below the full 1ine is described b
the statistical bootstrap model, the region above the broken 1
by the quark-gluon plasma. The critical curves can be made to

coincide.
P
wn
[~2]
9
2
o,
-
£
>
Py

Fig. 3b P - V diagram (qualitative) of the phase transition (hadron ga:
quark-gluon plasma) along the broken line T = const. of Fig. 3:
The coexistence region is found from the usual Maxwell construc
(the shaded areas are equal).




the actual volume. This leads to the occurence of a third region - the

coexistence region of matter, in addition to the pure quark and hadron domains.

For V < V1 corresponding to v > vy - 1/V1 all matter has gone into the quﬁ?k
plasma phase.

The dotted 1ine in fig. 3b) encloses (qualitatively) the domain in which the
coexistence between both phases of hadronic matter seems possible. We further
note that at low temperatures, T = 50 MeV, the plasma and hadronic gas cri-
tical curves meet each other in fig. 3a). This is just the domain where at
present our description of the hadronic gas fails while the quark-gluon
plasma also begins to suffer from infrared difficulties. Both approaches

have a very limited validity in this domain.

The qualitative discussion presented above can be easily supplemented with
quantitative results; but before we turn our attention to the modifications

forced onto this simple picture by the experimental circumstances in high
energy nuclear collisions.

5. Nuclear Collisions and Inclusive Particle Spectra

We assume that in relativisitic collisions triggered to small impact para-
meters by high multiplicities and absence of projectile fragments™™ a hot
central fireball of hadronic matter can be produced. We are aware of the whole
prolematics connected with such an idealization. A proper treatment should
include collective motions and distribution of collective velocities,

local temperatures and so on1g as explained in the lecture of R. Hagedornlo;
triggering for high multipiicities hopefully eliminates some of the compli-
cations. In nearly symmetric collisions (projectile and target nuclei are
similar) we can argue that the numbers of participants in the centre of

mass of the fireball originating in the projectile or target are the same.
Therefore, it is irrelevant how many nucleons do form the fireball - and

the above symmetry argument leads, in a straightforward way, to a formula
for the centre of mass energy per participating nucleon:

E
U= _C_A"'_ =my /T¥ (B 1ap/P)/2my (58)

where Ek,1ab/A is the projectile kinetic energy per nucieon in the laboratory
frame. While the fireball changes its baryon density and chemical composition
(v + p ~ A etc.) during its lifetime through a change in temperature and
chemical potential, the conservation of energy and baryon number assures us
that U in Eq. (58) remains constant, assuming that the inflyence on U of
pre-equilibrium emission of hadrons from the fireball is negligible. As U

is the total energy per baryon available, we can, supposing that kinetic and
chemical equilibrium have been reached, set it equal to the ratio of thermo-
dynamic expectation values of the total energy and baryon number

(59)

Thus we see that the experimental value of U Eq. (58) fixes through Eq. {59)

a relation between allowable values of (8, A): the available excitation energy
defines the temperature and the chemical composition of hadronic fireballs.

In fig. 4a,b) these paths are shown for a choice of kinetic energies Ek,]ab/A
in a) in the u - T plane and in b) in the v ~ T plane. In both cases, only

the hadronic gas domain is shown. We wish to note several features of the
curves shown in fig. 4) relevant in later considerations: -

1) beginning at the critical curve, the chemical potential first drops rapidly
when T decreases and than rises slowly as T decreases further (fig. 4a);
this correponds to a monotonically falling baryon density with decreasing
temperature (Fig. 4b), but implies that in the initial expansion phase
of the fireball, the chemical compesition changes more rapidly than the
temperature;

2) the baryon density in fig. 4b) is of the order of 1-1.5 of normal nuclear
density. This is a consequence of the choice of 81/4 = 145 MeV. Were B
three times as large, i.e., 81/4 = 190 MeV - so far not excluded - then the
baryon densities in this figure would triple to 3-5 Ve Furthermore, we
observe that alang the critical curve of the hadronic gas the baryon
density falls with rising temperature. This is easily understood as,
at higher temperature, more volume is taken up by the numerous mesons;

3) Inspecting fig. 4b) we see that at given U the temperatures at the critical
curve and those at about -1/2 v, differ little (10 %) for low U, but more
significantly for large U. Thus, highly excited fireballs cool down more



Thus, highly excited fireballs cool down more before dissociation ('freeze
out'). As particles are emitted all the time while the fireball cools daown
along the lines of fig. 4), they carry kinetic energies related to
various different temperatures; the inclusive single particle momentum
distribution will yield only averages along these cooling lines.

Another remark which does not follow from the curves shown is:

L (MeV)
UFfm TP&1-086

4) Below about 1.8 GeV an important portion of total emergy is in the
collective (hydrodynamical) motion of hadronic matter hence the cooling
curves at constant excitation energy qo not describg properly the evo-
Tution of the fireball. ’

0 50 100 150 200
T (MeV) Calculations of this kind can also bhe carriedout for the quark plasma. They

are, at present, uncertain due to the unknown values of ag and 31/4. Fortu~
nately, there is one particular property of the equation of state of the
quark-gluon plasma that we can easily exploit. Combining £q. (54) with

Eq. (59) we obtain

Fig. 4a  The critical curve of hadron matter (bootstrap) together with
some “cooling curves" in the T - u plane. While the system
cools down along these lines it emits particles; when all par-
ticles have become free, it comes to rest on some point on P = 1/3(UY - 4B) i (60)
these curves ("freeze out"). In the shaded region our approach

may be invalid.
N Thus, for a given U (the available energy per baryon in a heavy ion collision)

Eq. (60) describes the pressure-volume (-1/v) relation. By choosing to

measure P in units of B and v in units of normal nuclear density,

1% vy = 0.14/fn° we Find:

17

1®

1 P/B = 473 [x(Ulmy) (v/vg) = 1]

——————————————————————— ‘OLL—

1> with

- vi = myu /48 = .56 [51/ 4 - 15 Mev; v, = .14/f0]] (61)
' ‘ ] Here, y is the ratio of the energy density of normal nuclei (eN = vao)
100 50 200 and of quark matter or of a gquark bag (eq = 4B). In fig. 5a this relation is

T(Mev) shown for three projectile energies: E ;.. /A = 1.80 GeV, 3.965 GeV, 5.914 GeV

corresponding to U = 1.314 GeV, 1.656 GeV and 1.913 GeV respectively. We

Fig. 4b  The critical curve of hadron matter (bootstrap) together with some  observe that even at the lowest energy shown, the quark pressure is zero

“cooling curves" (same energie as in Fig. 4a) in the variables T near the baryon density corresponding to 1.3 normal nuclear density, given

and v/vo = (baryon number density)/(normal nuclear baryon number the current value of B.
density). In the shaded region cur approach may be invalid.



§1¥4—§$ P-V diagram of "cooling curves" the dash-dotted 1ines, the phase change could never occur because the poini

. e ‘ -
5 onging to different kinetic jap.

energies per nycleon: 1) 1.8 Gev; particle pressure would diverge where the quark pressure vanishes. In our
E&gg? gegé]?gsgéglzhﬁev. in the histo- opinion, one cannot say it often enough: inclusion of the finite hadronic
e s » ‘ot
a2 down the quark lines anﬂsj5$p§°§§;e_ size and of the finite temperature when considering the phase transition

32§E§n°¥?:e§°s§2§ Q:grgp curves (Maxwell). to quark plasma, lowers the relevant baryen density [from 8-14 v, for cold
v .
of pointlike bootstrap ;aﬁﬁggg? pressure point-nucleon matter] to 1-5 2 (depending on the choice of B) in 2-5 GeV/.

nuclear co]]isionszo.

The physical picture underlying our discussion is an explosion of the fire
ball into vacuum with 1ittle energy being converted into collective motion
(e.g. hydrodynamical flgw) or being taken away by fast prehadronization pa
ticle emission. Thus the conserved -internal excitation energy can only be

10 shifted between thermal (kinetic) and chemical excitations of matter. 'Coc
thus really means that during the explosion the thermal energy is mostly
5 i converted into chemical eénergy - e.g. pions are produced.
Fig. 5b The total specific entropy
per baryon'in the hadronic gas phase, While it is at present hard to judge the precise amount of expected deviai
) same energies per nucleon as in fig. 5a. from the cooling curves shown in fig. 2, it is possible to show that they

are indeed entirely inconsistent with the notion of a reversible adiabatic
that is entropy conserving - expansion. As the expansion proceeds along U
lines we can compute using Egs. (36) and (37) the entropy per participati
baryon and we find a significant growth of total entropy. As shown in Fig
the entropy rises initially in the dense phase of the matter by as much a:
50 - 100 % due to the pion production and resonance decay. Amusingly eno
as the newly produced entropy is carried mostly by pions, one will find
the entropy carried by protons remains constant. With this remarkable beh
of the entropy we are in a certain sense, victims of our elaborate theor
had we used e.g. an ideal gas of Fermi nucleons then the expansion would
seem to be entropy conserving, as pion production and other chemistry had
been forgotten. Our fireballs have no tendency to expand reversibly and
adiabatically, as many reaction channels are open. A more complete discu
of the entropy puzzle can be found in ref. 1.

» We note that the hadronic
- ng ¢ , gas branches
the curves in fig. 5 show a quite similar behaviour to that shown at con-

stant temperature in Fig. 3b. Remarkab1ly enough, both branches meet h
zther at P = 0 since both have the Same energy density: ¢ = 4B and t::ie-
F?;? :(: —t:) ~ 1/ = 9/5 = U/4Bj However, what we cannot see inspecting
e .s at there will be a discontinuity in the variables y and T at
1S point except if parameters are chosen so that the critical cur f
both phases coincide. Indeed, near to P = g the results shown in FYeS :
should be replaced by points obtained from the Maxwell cunstructionlg+h i
pressure in a nuclear collision will never fall to zero, it will co;re . d
to the momentary vapour pressure of the order of 0.28 as the phase chaiszn

oceurs. It seems, inspecting fig. 4 again, that a possible test of the equations
state for the hadronic gas consists of the measurement of the temperature

6 further aspect of the equations of state for the hadronic as is al the hot fireball zone, and to do this as a function of the nuciear collis

illustrated in fig. 5a.Had we ignored the finite size of hadrons (oneSZf energy. The plausible assumption made is that the fireball follows the

the Van der Waals effects) in the hadron gas phase then, as shown by ‘ 'cooling' lines shown in fig. 4 until final dissociation into hadrons. Thi



presupposes that the surface emission of hadrons during the expansion of the
fireball does not significantly alter the available energy per baryon. This
is more Vikely true for sufficiently large fireballis; for small ones, pion
emission by the surface may influence the energy balance. As the fireball
expands, the temperature falls and the chemical compesition changes. The
hadronic clusters dissociate and more and more hadrons are to be found in
the ‘elementary' form of nucleon or a pion; their kinetic enmergies are remi-
niscent of the temperature found at each phase of the expansion.

To compute the experimentally observable final temperature1’13 we shall
argue that a time average along the cooling curves must be performed. Not
knowing the reaction mechanisms too well, we assume that the temperature
decreases approximately linearly with the time in the significant expansion
phase. We further have to allow that a fraction of particles emitted can

be reabsorbed in the hadronic clusters. This is a geametric problem and,

in first approximation the ratio of the available volume A to the external
volume vex is the probability that an emitted particle be not reabsorbed,
i.e., that it can escape:

Resc., = MVgy = (1 - _e %ﬁ—)‘) (62)

The relative emission rate is just the integrated momentum spectrum
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The chemical potential acts only for nucleons. In the case of pions it has

to be dropped from the above expression. For the mean temperature we thus
find:

> = CS&ESC.. Remis.' TdT
CSﬁesc.' Remis,” 4T

¢ indicates here a line integral along that particular cooling curve in fig. 4

(64)

which belongs to the energy per baryon fixed by the experimentalist.

In practice, the temperature is most reliably measured through the measurement
of mean transverse momenta of the particles. It may be more practical there-
fore, to calculate the average transverse momentum of the emitted particles.
In principle, to obtain this result we have to perform a similar averaging

as above; for the average transverse momentum at given T, » we find8

ot [ ed T'/A)IT'J,; ’m’i"l(%(m)( |
A g = VAT B s
,I;: P 7 .LJ}D l<:2.(._‘_ )
The average over the cooling curve is then:
D /2 [Tm wm mir
E-TREM K, (Z)e AT
K PLMlpI»p7, = ‘fv“ [:1 7 ) (66)
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We did verify numerically that the order of averages does not matter;

<P (m, 2T ’/")>P e K A l,m,—l;'/u-)>g7<-. (67)

which shows that the mean transverse momentum is also the simplest (and
safest) method of determining the average temperature (indeed better than
fitting ad hoc exponential type functions to p, distributions).

In the presented calculations we have chosen the bag constant B = (145 MeV)4 b
now we believe that a larger B should be used. As a consequence of our
choice and the measured pion temperature of <T>1erx = 140 MeV at highest

ISR energies, we had to choose the constant H such that To = 190 MeV, see

Eq. (43).

The average temperature, as a function of the range of integration aover T,
reaches different limiting values for different particles. The Timiting

value obtained thus is the observable "average temperature" of the debris
of the interaction, while the initial temperature Tep at given Ek,lab -

full line in Fig. 6 - is difficult to observe. When integrating along the
cooling line (Eq. 64) we can easily, at each point, determine the average
hadronic cluster mass. The integration for protons is interrupted (protons
are 'frozen out') when the average cluster mass is about half the nucleon



2) the freeze-out of baryons occurs earlier than the freeze-out of pionms.

A third effect has been so far omitted - the emission of pions from two-
body decay of long Tived resonances1 would lead to an effective temperature

which is lower in nuclear collisions.
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Fig. 6 Mean temperatures for nucleons and pions together with the critical 00l ,,’””f-‘ s
temperature belonging to the pointwhere the “cooling curves" start ,’/
off the critical curve (see Fig. 4a). The mean temperatures are ob- ol -
1
tained by integrating along the cooling curves. Note that TN is ° Eygan?A (GeV)

always greater than T“.

isobar mass. We have also considered baryon density dependent freeze-out, Fid. 7 Mean transverse momenta of nucleons and pions found by integrating
but such a procedure depends strongly on the unreliable value of B. 9. 7

along the "cooling curves".
OQur choice of the freeze-out condition was made in such a way that the
nucleon temperature at Ek,]ab/A = 1.8 GeV is about.120 MeV. The model depen-
dence of our freeze-out introduces an uncertainty of several MeV on the
average temperature. In fig. 6 the pion and nucleon average temperatures
are shown as a function of the heavy ion kinetic energy. Two effects contri-
bute to the difference between = and N temperatures:

In Fig. 7 we show the dependence of the average transverse momenta of pions
and nucleons on the kinetic energy of the heavy ion projectiles.

1) the particuiar shape of the cooling curves (fig. 4a): the chemical
potential drops rapidly from the critical curve, thereby damping rela-
tive baryon emission at lower T. Pions, which do not feel the baryon
chemical potential, continue being created also at lower temperatures.



6. Strangeness in Heavy Ion Colilisions

From the averaging process described here, we have learned that the tempera-
tures and transverse momenta of particles originating in the hot fireballs
are more reminiscent of the entire history of the fireball expansion than

- of the initial hot compressed state, perhaps present in the form of quark
matter. We may generalize this result and then claim that most properties of
inclusive spectra are reminiscent of the equations of state of the hadronic
gas phase and that the memory of the initial dense state is lost during the
expansion of the fireballs as the hadronic gas rescatters many times while
it evolves into the final kinetic and chemical equilibrium state.

In order to observe properties of quark-gluon plasma we must design a ther-
mometer, an isolated degree of freedom weakly coupled to the hadronic matter.
Nature has, in principle (but not in praxis) provided several such thermo-
meters: leptons and heavy flavours of quarks. We would 1ike to point here

to a particular phenomenon perhaps quite uniquely characteristic of quark
matter; first we note that, at a given temperature, the quark-gluon plasma
will contain an equal number of strange (s) quarks and antistrange (s) quarks,
naturally assuming that the hadronic collision time is much too short to allow
for Tight flavour weak interaction conversion to strangeness. Thus, assuming

equilibrium in the quark plasma, we find the density of the strange quarks
to be (two spins and three colours):

si=SNy= 53& P /i 'rmf K, (™) (68)

(neglecting, for the time being, the perturbative corrections and, of course,
ignoring weak decays). As the mass of the strange quarks, m 5 in the pertur-
bative vacuum is believed to be of the order of 280 - 300 MeV, the assumption
of equilibrium for m /T - 2 may indeed be correct. In Eq. (68) we were able
to use the Boltzmann distribution again, as the density of strangeness is

relatively Tow. Similarly, there is a certain light antiquark density
(q stands for either u or d):

_E - 1pT- Im_
@3 © A

where the quark chemical potential is, as given by Eq. (46), Mg = u/3. This
exponent suppresses the qq pair production.

Uv =£ '_/u"n-T?._-’—_i-z (69)

What we intend to show is that there are many more s quarks than antiquarks
of each light flavour. Indeed:

77 £ (22" K (32) M7

The function xzkz(x) is, for example, tabulated in Ref. 21. For x = m//T
between 1.5 and 2, it varies between 1.3 and 1. Thus, we almost always have
more s than q quarks and, in many cases of interest, s/ga 5. As u - 0 there
are abput as many u and g quarks as there are S quarks.

when the quark matter dissociates into hadrons, some of the numerous s may »
instead of being bound in a qs kaon, enter into a (qqs) antibaryon and, in
particular, a A or iC. The probability for this process seems to be comparable
to the similar one for the production of antinucleons by the antiquarks pre-
sent in the plasma. What 1s particularly noteworthy about the s carrying
antibaryons is that they can conventionally only be produced in direct pair
production reactions. Up to about Ek,lab/A = 3.5 GeV this process is very
strongly suppressed by the energy-momentum conservation because for free

p~p collisions the threshold is at about 7 GeV. We thus would 1ike to argue
that a study of the A, I° in nuclear collisions for 2 < Ek’m]A < 4 GeV
could shed light on the early stages of the nuclear collisions in which
quark matter way be formed.

Let us mention here another effect of importance in this context: the pro-
duction rate of a pair of particles with a conserved quantum number 1ike

strangeness will be usually suppressed by the Boltzmann factor e-Zm/T,

rather than a factor e ™7

as it is the case in thermochemical equilibrium -
see e.g. the attendum in Ref. ( 8). As relativistic nuclear collisions are
just on the borderline between those two limiting cases, it is important
when considering the yield of strange particles to understand the tran-
sition between them. We will now show how one can describe these different

cases in a unified statistical description22

As we have already implicitly discussed (see Eq. (12)) the logarithm of the
grand partition function Z is a sum over all different particle configu-
rations e.g. expressed with the help of the mass spectrum. Hence we can

now concentrate in particular on that part of ¢nZ which is exclusively
associated with the strangeness.



. 2 _
As the temperatures of interest to us and which allow appreciable strangeness  for particles (+u) and antiparticles (-u), where W(x) = x"Kp(x), ¥; = my /T

production are at the same time high enough to prevent the strange particiles and all kaons and hyperons are counted. In the quark phase we have
from being thermodynamically degenerate, we can restrict ourselves again
9 ther . g Ba EpET L (76)
to the discussion of Boltzmann statistics only. Z = 6 Xa)
19 .zn"'

The contribution of a state with k strange particles to Z is with sz =mg ~ 280 MeV. We note in passing that the baryon chemical po-

tential cancels out in y, Eq. (74) when Eq. (76) is inserted in the quark
) s Vv )l‘ 71y - phase - compare with Eq. (68).
Z,=q (F 2. (W) o
where the one particle function Z; for a particle of mass mg is given in By differentiating 2nZ., Eq. (73) with respect to f we find the strangeness

Eq. (16). To include both particles and antiparticles as two thermodynamically number present at given T, V:

independent phases in Eg. (71) the sum over s in Eq. (71) must include them

both. As the quantum numbers of particles ('p') and antiparticles ('a') must InDe = ?59—19“25 /.\t.-.-, = L{VHY) I,(m ) Vy (77
be always present with exactly the same total number, not each term in Eq. (71) s F

can contribute. Only when n = k/2 = number of particles = number of anti-

particies is exactly fullfilled we have a physical state, Hence

1.0 ) | T T T T T L —
L () (L2 (p 2 w [ | o

ZZVL QZ'R)‘ 1 i hadronic phase ] The quenching factor
We now introduce a fugacity factor f" to be able to count the number of | 4 strangen?ss productic
strangeness pairs present. Allowing arbitrary number of pairs to be pro- 7 osk 4150 Mev J as function of the a:
duced we obtain L #"550 Mew 4 volume \l/\lh~\:lh = 4n/t

°° n Z Sa B (hudrons only) 7

Z (B V; {L) = | Twl ( ) (2: 4 ) [ ’

S wzo NN Se (73) 4

Ty o
—Ic(q)’) V/Vh

where I0 is the modified Bessel function and

} . -n/T
y = .F (_Z ZSP ) ( 2'_ Zh ) (74) For large y, that is at given T for large volume/}{_ we find n>g = Vy - e
sp ! Sa 1 ' as expected. For small y we find <n>. =y - 2m . In Fig. 8 we show the
ing f I,/1_=n as a function of the volume V
We have to maintain the difference between the particles (p) and anti- dependence of 'l':he q:er\;chmg j;c:or fi‘/ﬁ : tynica1 set of parameters: T = 150
particles (a) as in nuclear collisions the symmetry is broken by the presence measured in units of V,, = m p

. = dronic gas phase).
of baryons and the associated need for a baryon fugacity (chemical potential n) ¥ 550 MeV (hadronic gas p )
that contrals the baryon number. We obtain . . X s
The following observations follow inspecting Fig. 8:

T 3 1 - .
Z Ba:: ZSP_,G- = V =1 [.ZLJLXK)i-Qe-N l(”(x )q-gw(xz))] 1) The strangeness yield is a qualitative measure of the hadronic volume in
1 8 ! 2 thermodynamic equilibrium.
Pach

(75)



2) Total strangeness yield is not an indicator of the phase transition to quark 7. Summary

pilasma - as the enhencement (th/q = 1.25) in yield can be reinterpreted
as being due to a change in hadronic volume.

3) We can expect that in nuclear collisions the active volume will be suffi-
ciently large to allow the strangeness yieid to correspond to that of
"infinite' volume for reactions triggered on 'central collisions'. Hence

€.9. A production rate will significantly exceed that found in p-p
collisions.

Our conclusions about the significance of 1 yield as an indicator of the
phase transition to quark plasma remain valid as the production of A in the
hadronic gas phase will only be possible in the very first stages of the
nuclear collisions, if sufficient CM-energy is available.

Our aim has been to obtain a description of hadronic matter valid for high
internal excitations. By postulating the kinetic and chemical equilibrium

we have been able to develop a thermodynamic description valid for high tempe-
ratures and different chemical compositions. In our work we have found two
physically different domains; firstly the hadronic gas phase, in which indi-
vidual hadrons can exist as separate entities, but are sometimes combined

to Targer hadronic clusters; and 1n the second domain, individual hadrons
dissolve into one large cluster consisting of hadronic constituents - the
quark-gluon plasma. ’

In order to obtain a theoreticai description of both phases we have used

some 'common' knowledge and plausible interpretations of the currently
available experimental observation. In particular, in the case of hadronic
gas we have completely abandoned a more conventional Lagrangian approach

in favour of a semiphenomenological statistical bootstrap model of hadronic
matter that incorporates those properties of hadronic interaction that are,
in our opinion, most important in nuclear collisions.

In particular, the attractive interactions are included through the rich,
exponentially growing hadronic mass spectrum tTmz, b) while the introduction
of the finite volume of each hadron is responsible for an effective short-
range repulsion. Aside from these manifestations of strong interactions, we
only satisfy the usual conservation laws of energy, momentum and baryon number.
We neglect quantum statistics since quantitative study has revealed that this
is allowed above T = 50 MeV. But we allow particle production, which intro-
duces a quantum physical aspect into the otherwise 'classical' theory of
Boltzmann particles.

Our approach leads us to the equations of state of hadronic matier which
reflect what we have included into our considerations. It is the quantitative
nature or our work that allows a detailed comparison with the experiment.
This work has just begun and it is too early to say if the features of
strong interactions that we have chosen to include in our considerations are
the most relevant ones. It is important to observe that the currently pre-
dicted pion and nucieon mean transverse momenta and temperatures show the
required substantial rise, see Fig. 7,as required by the experimental results



available at £ 1., /A = 2 GeV [BEVALAC - see Ref. 18] and at 1000 GeV
[ISR - see Ref, 17] . Further comparisons involving, in particular,
particle multiplicities and strangeness production are under consideration.

We also mention the internal theoretical consistency of our two-fold approach.
With the proper interpretation, the statistical bootstrap leads us, in a
straight forward fashion, to the posutlate of a phase transition to the
quark-gluon plasma. This second phase is treated by a quite different method;
in addition to the standard Lagrangian quantum field theory of weakly inter-
acting particles at finite temperature and density, we also introduce the
phenomenological vacuum pressure and energy density B.

Perhaps the most interesting aspect of our work is the realization that the
transition to quark matter will occur at much lower baryon density for

highly excited hadronic matter than for matter in the ground state (T = 0).
The precise baryon density of the phase transtition depends somewhat on

the bag constant, but we estimate it to be at about 2-4 v, at T = 150 MeV. The
detailed study of the different aspects of this phase transtion, as well as
of possible characteristic signatures of quark matter, must still be

carried out. We have given here only a very preliminary report on the status
of our present understanding.

We believe that the occurence of the quark plasma phase is observable and
we have proposed therefore a measurement of the A/p relative yield between
2 and 10 GeV/N kinetic energies. In the quark plasma phase we expect a sig-~
nificant enhancement of A production which will be most likely visible in
the A/p relative rate.
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Foreword

This report contains manuscripts of invited talks presented at the
Workshop on Future Retativistic Heavy Ion Experiments that was held
at GSI, Darmstadt, from 7 to 10 October 1980.

The purpose of this meeting was to discuss theoretical ideas, and
instrumentation advances that might provide a basis for the next
generation of experiments in the field of high energy nucleus-nucleus
collisions. Energies much higher than the present Bevalac or Dubna

WORKSHOP ON FUTURE RELATIVISTIC Conetraction o modttiention for futee relatiistic vy ton
 HEAVY ION EXPERIMENTS ‘ .

research. It may then be expected that the experimental technigues

of present particle physics will become increasingly important.
Although not always directly applicable to reactions with an extremely
high product multipiicity, such instrumentation of today may serve

as an orientation mark for future developments, devoted to heavy ion
reactions. -

Proceedings of the

GSI Darmstadt, October 7-10, 1980

~

The manuscripts are reproduced here in the order of their presentation

at the workshop. We are very grateful to all colleagues who could

‘provide us with a manuscript, thus making these proceedings rather
comprehensive. We further wish to express our thanks to our co-organizers,

to all the participants, and to the staff at GSI for their contribution
to this conference.
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