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2. Formation and Observation of the Quark-Gluon Plasma*
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2.1. Overview

What purpose could we follow when arguing for the study of high energy nuclear collisions [1]? It
would appear that the complexity of such collisions, involving several hundreds of valence quarks, must
cover up all the interesting feature of fundamental interactions. I would like to argue in this report that
much in the nature and properties of strong interactions can be studied by creating in the laboratory a
new state of matter — the quark-gluon plasma [2]. Unlike hadron-hadron collisions we anticipate that, in
an important fraction of nucleus-nucleus collisions, each participating quark will scatter many times
before joining into an asymptotic hadronic state. The associated simplification of the involved physics
arises because we can use in such a case the well established methods of statistical physics in order to
connect the microscopic world with effects and properties visible to experimentalists’ eyes. Alone the
presumption of an approximate thermochemical equilibrium frees us from the dependence on details of
quark wavefunctions in a small hadronic bag consisting of only few quarks.

There are several stages in this new and exciting field of high energy physics. The first one concerns
the willingness to accept the fact that available energy is equipartitioned among accessible degrees of
freedom. This means that there exists a domain in space, in which, in a proper Lorentz form, the energy
of the longitudinal motion has been largely transformed to transverse degrees of freedom. We call this
region “fireball”. The physical variables characterising a fireball are: energy density, baryon number
density and volume. The basic question concerns the internal structure of the fireball - it can consist
either of individual hadrons or, instead, of quarks and gluons in a new physical phase: they look
deconfined as they move freely over the volume of the fireball. It appears that the phase transition from
the hadronic gas phase to the quark-gluon plasma is mainly controlled by the energy density of the
fireball. Several estimates [2], lead to 0.6-1 GeV/fm” for the critical energy density, to be compared with
a value of 0.16 GeV/fm’ inside individual hadrons. Many theoretical questions about strong interactions
will be settled if the parameters and nature of the phase transition are determined. We turn to these
problems further below.

The second stage of the developments in this field concerns the interaction of the experimentalists
with the plasma. It is quite difficult to insert a thermometer and to measure baryon density at
T =150 MeV and threefold or even higher nuclear compressions. We must either use only electromag-
netically interacting particles [3] (photons, lepton pairs) in order to get them out of the plasma or study
the heavy flavour abundance generated in the collision [4]. To obtain a better impression of what is
meant imagine that strange quarks are very abundant in the plasma (and indeed they are!). Then, since
a (sss)-state is bound and stable in the hot perturbative QCD-vacuum, it would be the most abundant
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332 Quark matter formation and heavy ion collisions

baryon to emerge from the plasma. I doubt that such an “Omegaisation” of nuclear matter could leave
any doubts about the occurrence of a phase transition. Other exotic hadrons [5] such as e.g. csq, ¢5 etc.
would also support this conclusion. But even the enhancement of the more accessible abundances of A
may already be sufficient for our purposes.

But there is more to meet the eyes. Restoration of the perturbative QCD vacuum may be followed at
higher and higher energy densities by restoration of chiral symmetry, as shown qualitatively in fig. 2.1,
then by SU(2) symmetry (and finally by SU(5) symmetry!). If the fact that we can trace back the
evolution of the universe [6] in the laboratory does not excite one’s fantasy, one may then remember
that the plasma state is the only place known (after the universe was created) where one can “burn”
baryon number, thus releasing the energy from the Big Bang stored in matter. Perhaps sufficiently
extreme conditions that are here necessary are “‘created” inside quasars, thus leading to the enormous
energies radiated by these stellar objects.
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Fig. 2.1. Phase diagram of hadronic matter in the u-T plane.

Coming back to earth we begin by recalling that in a statistical description of matter the unhandy
microscopical variables: energy, baryon number etc. are replaced by thermodynamical quantities; the
temperature T is a measure of energy per degree of freedom, the baryon chemical potential x controls
the mean baryon density: Statistical quantities such as entropy (measure of the number of accessible
states), pressure, heat capacity etc. will be also functions of T and gy, to be determined. The theoretical
techniques required for the description of both and quite different phases: the hadronic gas and the
quark gluon plasma, must allow for the formation of numerous hadronic resonances on the one side [7],
which then dissolve at sufficiently high spatial density in a state consisting of the fundamental
constituents. At this point we must appreciate the importance and help provided by high temperature.
To obtain high particle density we may, instead of compressing matter (which as it turns out is quite
difficult), heat it up; many pions are easily generated, leading to the occurrence of a transition at
moderate (even vanishing) baryon density [8].

2.2. Thermodynamics of interacting hadrons

The main hypothesis which allows one to simplify the situation is to postulate the resonance
dominance of hadron-hadron interactions [7]-in this case the hadronic gas phase is practically a
superposition of an infinity of different hadronic gases and all information about the interaction is
hidden in the mass spectrum 7(m°, b), which describes the number of hadrons of baryon number b in a
mass interval dm? [9].

We survey in the following the developments discussed in refs. [8, 9]. We assume that the mass
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spectrum 7(m?, b) is already known. The grand microcanonical level density is then given by an
invariant phase space integral. The extreme richness of the spectrum 7(m?, b) ~ exp(m/T,) enables us to
neglect Fermi and Bose statistics above T =~ 50 MeV and to treat all particles as “Boltzmannions”. We
find:

o0, Ve 0) = 00) 50+ 3 30 (p - 2 ) Sa(b- 2 6) [T HBE A 0.

i=1 7/ b}

In this expression the first term corresponds to the vacuum state. The Nth term is the sum over all
possible partitions of the total baryon number and of the total momentum p among N Boltzmannions,
each having an internal number of quantum states given by 7(p3, b;). These Boltzmannions are hadronic
resonances of baryon number b, (— < b; <x). Every resonance can move freely in the remaining
volume 4 left over from the external volume V.,, after subtracting the proper volume V, associated
with all the hadrons:

N
A* = V’e‘x—z Ve (¥

i=1

V* is a covariant generalisation of V.. In the rest frame, we have V, = (V,0).

In the generalisation (1) of the popular phase space formula, three essential features of hadronic
interactions are now explicitly included:

(a) The dense set of hadronic resonances dominating particle scattering via (m?, b;).

(b) The proper natural volumes of hadronic resonances. This is done via 4*.

(c) The conservation of baryon number and the clustering of hadrons into lumps of matter with
|b] > 1.

The thermodynamic properties of the hot hadronic gas follow from the study of the grand partition
function Z(B, VA), as obtained from the level density o(p, V, b), namely:

2@ V.)= 3 2 [e*ra(p v, b)d'p. )

b=—o

A covariant generalisation of thermodynamics, with an inverse temperature four vector B8, has been
used here. In the rest frame of the relativistic baryon chemical potential u, we have:

A =expu/T). @

This is introduced in order to conserve baryon number in the statistical ensemble. All quantities of
physical interest can then be derived as usual, differentiating In Z with respect to its variables.

Eqgs. (1-3) leave us with the task of finding the mass spectrum 7. Experimental knowledge of  is
limited to low excitations and/or to low baryon number. Following Hagedorn, we introduce here a
theoretical model: “the statistical bootstrap”, in order to obtain a mass spectrum consistent with direct
(and indirect) experimental evidence. The qualitative arguments leading to an integral equation for
7(m?, b) are the following: when V., in eq. (1) is just the proper volume V., of a hadronic cluster, then ¢
in eq. (1), up to a normalization factor, is essentially the mass spectrum 7. Indeed, how could we
distinguish between a composite system [as described by eq. (1)] compressed to the natural volume of a
hadronic cluster and an “‘elementary” cluster having the same quantum numbers? We thus demand
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a(p, V, b)lv-v.= H1(p>, b) ©)

where the “bootstrap constant” H is to be determined below. It is not simply sufficient to insert eq. (5)
into eq. (1) to obtain the bootstrap equation for 7. More involved arguments are indeed necessary [8, 9]
in order to obtain a “bootstrap equation” for the mass spectrum such as:

o

H(p? b)= Hz, 8o(p*— M3)+ NEzﬁf 54(1)— ﬁj p,-) > sx(b —2 b,.) f[lHT(pzi, b)d'p..  (6)

i=1 {b;}

The first term is the lowest one-particle contribution to the mass spectrum, z, is its statistical weight
(21 +1)(2J + 1). The index “0” restricts the § function to the positive root only. Only terms with b = 0,
+1, corresponding to the lowest energy qq (pions) and qqq (nucleons) states contribute in the first term
of eq. (6). All excitations are contained in the second term since an arbitrary quark constant can be
achieved by combining [(qq)"(qqq)™]. Heavy flavours are ignored at this point but can easily be
introduced. However they do not essentially influence the behaviour of . In the course of deriving the
bootstrap equation (6) it turns out that the cluster volume V, grows proportional to the invariant cluster
mass [9]

V(p?) = Vp*(4B). %)

The proportionality constant has been called 4B in order to establish a close relationship with the quark
bag model [10]. The value of B can be derived from different considerations involving the true and
perturbative QCD states. While the original MIT-bag fit gives V'*= 145MeV, the most generally
accepted value today is perhaps

B"=190MeV  or B=170MeV/im’. ®)

The bootstrap constant H and the bag constant B are the only seemingly free parameters in this
approach. As just pointed out, B is determined from other considerations, while H turns out to be
inversely proportional to B. Hence, if one wishes to believe the last detail of the statistical bootstrap
approach, there remains no free parameter in this approach. What this means for the transition from
gas to plasma will be now shown.

Instead of solving eq. (6), which will lead us to the exponential mass spectrum [7],

7(m?, b)~ exp(m/Ty) ©

we wish to concentrate here on the double integral (Laplace) transform of eq. (6) which will be all we
need to establish the physical properties of the hadronic gas phase. Introducing the transforms of the
one particle term, eq. (6)

(B, A):= D A’Hz, 8o(p>— Mi)e #7 d'p (10)

b=—o

with pions and nucleons only
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o(B,1)= 27rHT[3mK1<mT’1)+4(A +%)mNK1(%)] ,

and of the mass spectrum:

o(B,A):= i Aber(pz, bye #7d'p.

b=—o

We find for the entire eq. (6) the simple relation

B(B, A)= ¢(B, 1) +exp[d(B, A)] - #(B, A) - 1.

To study the behaviour of ¢(B, A) we make use of the apparent implicit dependence:
®(B, A)= G(p(B, 1))

with function G being defined by eq. (13)
¢ =2G+1-exp[G].

This function G(¢) is shown in fig. 2.2. As is apparent there there is a maximal value ¢q

0o =In(4/e)=03863.. .,
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(11

(12)

(13)

(14a)

(14b)

(14c)

beyond which the function G has no real solutions. Recalling the physical meaning of G, egs. (14a, 12),
we conclude that eq. (14c) establishes a boundary in the A (i.e. 1), T plane beyond which the hadronic

gas phase cannot exist. This boundary is implicitly given by the relation (11):

In(4/e) = 2wHT [3m . Ki(m/ Te.) + 8 cosh(uo/ To.) maKi(mn/ To)]

(15)

shown in fig. 2.3. The region denoted ‘“Hadronic Gas Phase” is that described by our current approach.
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Fig. 2.2. Bootstrap function G(p)—the dashed line represents the Fig. 2.3. Boundary to the “hadronic gas phase” in the bootstrap model.

unphysical branch. In the shaded region quantum statistics cannot be neglected.
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With our choice of parameters we find that
Tt = 0) = Ty~ 160-170 MeV . (16)

Note that u = 0 implies zero baryon number for the plasma state. For uy = pe (7o = 0) the solution of
eq. (15) is simply u. ~ my since no quantum statistics effects have been included. Thus the dashed
region in fig. 2.2 “nuclear matter” is excluded from our considerations. As we shall shortly see, the
boundary of the hadronic gas phase is also characterized by a constant energy density ¢ = 4B.

Given the function G(¢)= ¢(B,A) we can in principle study the form of the hadronic mass
spectrum. As it turns out we can obtain the partition function directly from ¢: The formal similarity
between eq. (3) and eq. (12) can be exploited to derive a relation between their integral transforms [1]
(from here on: 8= \/,B,LB“);

In Z(B, Ver, ) = - =) (VQ 5 0B ) (17)

which can also be written in a form which makes the different physical inputs more explicit:

In Z(B, Ve, A) = “(—Vl 9G(@) . 78, V). (18)

In the absence of a finite hadronic volume and with interactions described by the first two terms, we
would simply have an ideal Boltzmann gas, described by the one-particle partition function Z;:

Zy= Zog+ 2 cosh(u/ T) Zag (19)
where
3 2
Zagf Zuga = QI+ 1S + 1) 11 () k(). 20)

Let us now briefly discuss the role of the available volume: as we have explicitly assumed, all hadrons
have an internal energy density 4B (actually at finite pressure there is a small correction, see ref. [4a]
for details). Hence the total energy of the fireball Er can be written as

Er=¢eV,=4B(V—4) (21

where V., — 4 is the volume occupied by hadrons. We thus find
A= Vo~ Ee/AB = V(1 - €/(4B)) 22)
when working out the relevant physical consequences we must always remember that the fireball is an
isolated physical system, for which a statistical approach has been followed in view of the internal

disorder (high number of available states) rather than because of a coupling to a heat bath.
The remainder of the discussion of the hadronic gas is a simple application of the rules of statistical
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thermodynamics. By investigating the meaning of the thermodynamic averages it turns out that the
apparent (B, A) dependence of the available volume 4 in eq. (18) must be disregarded when differen-
tiating In Z with respect to B8 and A. As eq. (1) shows explicitly, the density of states for extended

particles in V., is the same as that for point particles in 4. Therefore

In Z(B, Vex, A)=1n Z,(B, 4, A).

(23)

We thus first calculate the point particle energy, baryon number densities, pressure, and entropy density

== 1 3511 Zn = iy g 4B )
o= T A0 Zp= —H(—gﬂ—)ﬂﬁmﬁ;\)
Pu= I Z= ~ s 2 8(6.0)

Spt = 2a?(Tanpt) —P—-l——bTM_If&

From this, we easily find the energy density, as

_E)__ 10 _4.
=V Vg M 2B Ve )=

Inserting eq. (22) into eq. (28) and solving for &, we find:

o) B
1+ ex(B, A)/4B°

and hence another form for eq. (22):
V=4 - (1+ ex(B, A)/4B)
and similarly for the baryon density, pressure and entropy density

Vot
T 2./4B

V=

o Pu

~ 1+ ¢,/4B

Spt

S :___p_.
1+ ¢,/4B

We now have a complete set of equations of state for observable quantities

(24)
(29)
(26)

27)

(28)

(29)

(30)

@D

(2)

(33)

as functions of the
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chemical potential u, the temperature T and the external volume V., While these equations are
semi-analytic, one has to evaluate the different quantities numerically due to the implicit definition of
¢ (B, A) that determines In Z. However, when B, A approach the critical curve, fig. 2.3, we easily find
from the singularity of ¢ that e, diverges and therefore

e—>4B
p-0 (34)
4-0.

These limits indicate that at the critical line, matter has lumped into one large cluster with the energy
density 4B. No free volume is left, and, since only one cluster is present, the pressure has vanished.
However, the baryon density varies along the critical curve; it falls with increasing temperature. This is
easily understood: as temperature is increased, more mesons are produced that take up some of the
available space. Therefore hadronic matter can saturate at lower baryon density. We further note here
that in order to properly understand the approach to the phase boundary, one has to incorporate and
understand the properties of the hadronic world beyond the critical curve. We turn now to the study of
the perturbative quark-gluon plasma phase.

2.3. QCD and the quark-gluon plasma

We begin with a summary of the relevant postulates and results that characterize the current
understanding of strong interactions in quantum chromodynamics (QCD). The most important pos-
tulate is that the proper vacuum state in QCD is not the (trivial) perturbative state that we (naively)
imagine to exist everywhere and which is hardly changed when the interactions are turned off/on. In
QCD the true vacuum state is believed to have a complicated structure which originates in the glue
(pure gauge field) sector of the theory. The perturbative vacuum is an excited state with an energy
density B above the true vacuum. It is to be found inside hadrons where perturbative quanta of the
theory, in particular quarks, can therefore exist. The occurrence of the true vacuum state is intimately
connected to the glue—glue interaction; gluons also carry the colour charge that is responsible for the
quark—quark interaction. In the above discussion, the confinement of quarks is a natural feature of the
hypothetical structure of the true vacuum.

Another feature of the true vacuum is that it exercises a pressure on the surface of the region of the
perturbative vacuum to which quarks are confined. Indeed, this is just the idea of the original MIT bag
model [10]. The Fermi pressure of almost massless light quarks is in equilibrium with the vacuum
pressure B. When many quarks are combined to form a giant quark bag, then their properties inside can
be obtained using the standard methods of many-body theory [2]. In particular, this also allows one to
include the effect of internal excitation through a finite temperature and through a change in the
chemical composition.

A further effect which must be taken into consideration is the quark—quark interaction. We shall use
here the first order contribution in the QCD running coupling constant a,(q®) = g°/4m. However, as
a.(q°) increases when the average momentum exchanged between quarks decreases, this approach will
have only a limited validity at relatively low densities and/or temperatures. The collective screening
effects in the plasma are of comparable order of magnitude and should reduce the importance of the
perturbative contribution.
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As u and d quarks are almost massless inside a bag, they can be produced in pairs and at moderate
temperatures many qgJ pairs will be present. In particular also s§ pairs will be produced and we will
return to this point below. Furthermore, real gluons can be present when T# 0 and will be included
here in our considerations.

As it was outlined in the previous section, a complete description of the thermodynamical behaviour
of a many-particle system can be derived from the grand partition function Z. For the case of the
quark-gluon plasma in the perturbative vacuum, one finds an analytic expression to first order in «
neglecting quark masses. We obtain for the quark Fermi gas [2b]

2 4
T S (= ORERNE 2 .

where g = (2s + 1)(2I + 1)N = 12 counts the number of the components in the quark gas, and A, is the
fugacity related to quark number. Since each quark has baryon number 3, we find

Ad=A=e4T (36)
where A, as previously, allows one to have conservation of baryon number. Consequently
3puqe=p. (37

The glue contribution is [2]

In Z(8, \) = \/8415 B(1- 157‘:5) . (38)

We notice two relevant differences with the photon gas: (i) the occurrence of a factor eight associated
with the number of gluons; (ii) the glue—glue interaction since gluons carry the colour charge.
Finally, let us introduce the true vacuum term as

In Z,..= —BBV. (39)

This leads to the required positive energy density B within the volume occupied by the coloured quarks
and gluons and to a negative pressure on the surface of this region. At this stage, this term is entirely
phenomenological as discussed above. The equations of state for the quark-gluon plasma are easily
obtained by differentiating

nZ=InZ,+InZ,+In Z,, (40)

with respect to 8, A and V. The energy density, baryon number density, pressure and entropy density
are respectively, written in terms of 4 and T

-804 o) (B (820
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v=5: | (1-22)((5) +5 7)) (42)

p= % (e —4B) (43)
s=%(l—%><%>z(yﬂ+ll;T(l—@ﬁy TP+ (1—§ﬁ>( Ty, (44)

In egs. (41, 44) the second T* (respt. T%) term originates from the gluonic degrees of freedom. In eq.
(43) we have right away used the relativistic relation between the quark and gluon energy density and
pressure

Pa~= %&1 > Pe= %Sg (45)

in order to derive this simple form of the equation of state.

This simple equation of state of the quark-gluon plasma is slightly modified when finite quark masses
are considered, or when the QCD coupling constant a, is dependent on the dimensional parameter A.
From eq. (43) it follows that when the pressure vanishes, the energy density is 4B, independently of the
values of p and T which fix the line P = 0. We recall that this has been precisely the kind of behaviour
found for the hadronic gas. This coincidence of the physical observables strongly suggests that, in an
exact calculation, both lines P = 0 should coincide; we will return to this point again below. For P >0
we have ¢ > 4B - we recall that in the hadronic gas we always had ¢ <4B. Thus, in this domain of the
u—T plane, we have a quark-gluon plasma exposed to an external force.

In order to obtain an idea of the form of the (P = 0) critical curve in the u~T plane as obtained for
the quark-gluon plasma, we rewrite eq. (43) for P = 0:

B -0 e oy - T [ (1-52) 12- (1-12) 8], o

Here, the last term is the glue pressure contribution. We find that the greatest lower bound on
temperature T, at u = () is about {a, = 3)

T,=083B'"”~160MeV =T,. 47)

This result shows the expected order of magnitude. The most remarkable point is, that it leads, for
B'*=190MeV, to almost exactly the same value as that found in the hadronic gas study presented in
the previous section.

Let us further note here that for T < u the baryon chemical potential tends to

P

1/4
_ _ 1 pua_
2a] )] = 1320MeV [a, =4 B = 190 MeV]. (48)

s = 3ua> 38"

Concluding this discussion of the P =0 line for the quark-gluon plasma, let us note that the choice
o, ~ 3 is motivated by fits of the charmonium and upsilonium spectra as well as by the analysis of deep
inelastic scattering. In both these cases spacelike domains of momentum transfer are explored. The
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much smaller value of «,~ 0.2 is found in timelike regions of momentum transfer, in ¢"e” — hadrons
experiments. In the quark-gluon plasma, as described up to first order in perturbation theory, positive
and negative momentum transfers occur: the perturbative corrections to the radiative T* contribution is
dominated by timelike momentum transfers, while the correction to the u* term originates from
spacelike quark-quark scattering. Finally we consider the energy density at u = 0. Restructuring some
factors again, we find the simple result:

2
s=B+%T“[ZS'8C-<1—14—5%)+2I-25-26%(1—%%>]. (49)

We note that for both quarks and gluons the interaction conspires to reduce the effective number of
degrees of freedom which are accessible. At a, =0 we find a handy relation

£q+ £, = (T/160 MeV)*[GeV/fm?] . (50)

At a, =3 we are seemingly left with only ~50% of the degrees of freedom, and the temperature “‘unit”
in the above formula drops to 135 MeV.

I have so far neglected to include heavy flavours into the description. For charm, with a mass of
about 1500 MeV, the thermodynamic abundance is sufficiently low that we can ignore its influence on
the properties of the plasma. Also, even the equilibrium abundance is quite small. Evaluating the
phase-space integrals that the ratio of charm to light antiflavour (either @ or d) gives

clg = &lG = exp{—(me— u/3)/ THmd TV 7/2 . G

Taking as a numerical example m.= 1500 MeV, T =200MeV, p =0, one finds with ¢/g=7Xx 107> a
small, but still quite significant abundance. However, the approach to chemical equilibrium (see below)
is to be studied to establish if the chemical equilibrium assumption is justified. We note that the energy
fraction carried by intrinsic charm in the plasma would be ~0.2% in the above example.

Clearly, we must turn our attention to strangeness — with a current quark mass of about 180 MeV, we
are actually above threshhold and indeed one finds that there is a quite appreciable s-abundance (see
again next part). An explicit calculation [4b] has shown that chemical equilibrium will be reached during
the short time interval of a heavy ion reaction. The motion of the particles being already semirelativis-
tic, an increase by about 15% of the number of available degrees of freedom (eq. (49)) is due to s§
production. The appearance of strangeness is a very important qualitative factor and we shall return to
its discussion in section 2.5.

2.4. Phase transition from the hadronic gas to the quark-gluon plasma

We have shown that two inherently different descriptions lead to the prediction of a qualitatively
similar region where a transition between both phases of hadronic matter can occur. From our results
we cannot deduce the order of the phase transition. However, the physics arguments which went into
these theoretical approaches require that this is a first order phase transition.

Consider the p—V diagram shown in fig. 2.4. Here we distinguish three domains - the hadonic gas
region is simply a Boltzmann gas where the pressure increases with reduction of the volume. However,
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Fig. 2.4. p-V diagram for the gas-plasma first order transition.

when internal excitation becomes important, the individual hadrons begin to cluster, reducing the
increase in the Boltzmann pressure since smaller number of particles exercises smaller pressure. In the
proper description we would have to describe this situation by allowing a coexistence of hadrons with
the plasma - this becomes necessary when the clustering overwhelms the compressive effects and the
pressure falls to zero as V reaches the proper volume of hadronic matter. At this point the pressure
rises again very quickly, since we now compress the hadronic constituents. By performing the Maxwell
construction as indicated in fig. 2.4 between volumes V; and V, we can find the most likely way taken
by the compressed hadronic gas in a nuclear collision. In our approach it seems to be a first order
transition. We should remember, that on the way out, during the expansion of the plasma state, the
entropy generated in the plasma (e.g. by s-production, shocks etc.) may require that the isolated plasma
state must expand to vanishing pressure P = 0 before it can disintegrate into individual hadrons. In an
extreme situation this disintegration may be quite a slow process with successive fragmentations!

It is interesting to follow the path taken by an isolated quark-gluon plasma fireball in the u—T plane,
or equivalently in the »—T plane. Several cases are depicted in fig. 2.5. After the Big Bang, with
expansion of the universe, the cooling shown by the dashed line occurs in a universe in which most of
the energy is in the form of radiation - hence we have for the chemical potential u < T. Similarly the
baryon density v is quite small. In normal stellar collapse leading to cold neutron stars we follow the
dashed-dotted line parallel to the w- resp. v-axis. The compression is accompanied by little heating. In
nuclear collision shown by the full line, the entire u—T and »-T plane can be explored by varying the
parameters of the colliding nuclei. It is important to appreciate that the arrows show the time evolution,
i.e. path of increasing entropy for the hadronic fireball at fixed total energy and baryon number.
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Fig. 2.5. Paths taken in the (a) u—7 plane and (b) »-T plane by different physical events.
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In the expansion period during which the temperature decreases, there is an associated decrease of
the chemical potential and of the density in the plasma phase while in the hadronic gas phase the
chemical potential can increase while the baryon density decreases. As it is evident from fig. 2.5, one
expects that the transition from gas to plasma takes place at higher baryon density and lower
temperature than the transition from plasma to gas. Obviously the larger volume fireball at higher
temperature contains more entropy at fixed total energy and baryon number. The initial heating of the
fireball at almost constant baryon density is done at the expense of a significant reduction in the baryon
chemical potential. This conversion of chemical energy to thermal excitation stops at some Ty, the
value of which depends on the available internal fireball energy. The qualitative curves are typical
representatives obtained from the equations of sections 2.2 and 2.3 for fixed E, b. Finally, the question
arises: how does the hadronic gas enter into the plasma state? As we follow the full line backwards, u (resp.
v) increases with decreasing T and we stay in the plasma phase until quite low temperatures. This suggests
that in order to get into the plasma at moderate temperatures and baryon densities (say: T = 150 MeV,
v~ 3yy < u ~ 800 MeV) we must blow off (perhaps in a manner similar to supernovae explosions) some
cold surface matter — or otherwise generate by internal nonequilibirum processes sufficient amounts of
entropy. It is for that reason that we have avoided to indicate the gas — plasma transition in fig. 2.5, as it must
be a highly nonequilibrium transition to which values u, T cannot perhaps be assigned at all: On the other
hand, the expansion of the plasma seems to be an adiabatic process, although here also some significant
amounts of entropy are produced.

As a last related comment we turn to the question: is the transition ‘hadronic gas— quark-gluon
plasma” in principle a phase transition or is it only a change in the nature of hadronic matter which is not
associated with any kind of singularity in the partition function in the limit of infinite volume. In the spirit of
the theoretical approaches taken here one needs a first order transition. However, this cannot be considered
as final —since contrary evidence can be found arguing that, in any finite volume, only a finite number of
incompressible hadrons can be studied. Here it turns out that one must very carefully study the meaning of
the thermodynamical limits before a conclusion can be reached; even worse is the observation that for
compressible individual hadrons we might find a second order phase transition. From this remark we learn
how sensitive this theory is to even the slightest improvement. I would like to conclude that it is experiment
which should teach us this important aspect of strong interactions.

2.5. Strangeness in the plasma

In order to observe the properties of the quark-gluon plasma we must design a thermometer, or an
isolated degree of freedom weakly coupled to hadronic matter. Nature has provided several such
thermometers: leptons, direct photons and quarks of heavy flavours. We would like to point here to a
particular phenomenon perhaps quite uniquely characteristic of quark matter. First we note that, at a
given temperature, the quark-gluon plasma will contain an equal number of strange (s) quarks and
antistrange (5) quarks. They are present during a hadronic collision time much too short to allow for weak
interaction conversion of light flavours to strangeness. Assuming chemical equilibrium in the quark plasma,
we find the density of the strange quarks to be (two spins and three colour):

3 d3 ) T § s
$=3=6 f ﬁ exp{— V| Th = 32 Kz(”%) (52)
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(neglecting, for the time being, perturbative corrections). As the mass of the strange quarks, my, in the
perturbative vacuum is believed to be of the order of 150-280 MeV, the assumption of equilibrium for
my/ T ~ 2 may indeed be correct. In eq. (52) the Boltzmann distribution can be used, as the density of
strangeness is relatively low. Similarly, there is a certain light antiquark density (g stands for either i or
d):

6

2
m

%s 6 f (—3-37,%3 exp{~|pl/T — o/ T} = exp{~pq/T} - T° (53)

where the quark chemical potential is u, = ©/3. This exponent suppresses the qg pair production, since
only for energies higher than u,, there is a large number of empty states available for quarks.

What I now intend to show is that there are many more § quarks than antiquarks of each light
flavour. Indeed:

S_Lm\* o (ms\ st
q‘z(T>K2(T)e : (54)

The function x? K*(x) varies between 1.3 and for x = m,/T between 1.5 and 2. Thus, we almost always
have more § than q quarks and, in many cases of interest, §/G ~ 5. As u — 0 there are about as many i
and q quarks as there are § quarks. This is shown quantitatively in fig. 2.6. Another important aspect is
the total strangeness abundance since for 7 = 200 MeV, m, = 150 MeV, chemical equilibrium predicts it
at about twice the normal baryon density: s/b = 0.4; hence there are as many strange and antistrange
quarks as there are baryons in the hadronic gas, or even much more, if we are in the “‘radiation” i.e.
baryon number depleted region.

The crucial question which arises is whether there is enough time to create sS pairs in nuclear
collisions. To answer it one has to compute [4b] (say in lowest order in perturbative QCD) the two
contributing invariant reaction rates (per unit time and per unit volume)

Agq:qq—ss (55)
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Fig. 2.6. Abundance of strange (= antistrange) quarks relative to light quark as a function of u for several choices of T (=120, 160 MeV) and
strange quark mass (my = 150, 280 MeV).
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The contributing diagrams are shown in figs. 2.7 a and b, respectively. These rates are dominated by the
glue—glue reaction and at T = 200 MeV, m, = 150 MeV, a, = 0.6 one finds A,, = 16/fm®. This is quite a
large rate, indicating that the typical relaxation time

7= n(x)/A (56)

(n() is the density at infinite time) will be about 10> sec. In fig. 2.8 the strangeness population
evolution is shown as a function of time at fixed u = 900 MeV. During the minimal anticipated lifetime
of the plasma we thus find that the strange quark abundance saturates at its chemical equilibrium point.
One can study how much more total strangeness is found in the quark-gluon plasma as compared to
the hadronic gas phase. While the total yields are up to 5-7 times higher (again depending on some
parameters) it is more appropriate to concentrate attention on those reaction channels which will be
particularly strongly populated when the quark plasma dissociates into hadrons. Here in particular, it
appears that the presence of quite rare multistrange hadrons will be enhanced, first because of the
relative high phase space density of strangeness in the plasma, and second because of the attractive
ss-QCD interaction in the 3. state and §s in the 1. state. Hence one should search for an increase of the
abundances of particles like =, 5, £, 2, ¢ and perhaps for highly strange pieces of baryonic matter,
rather than in the K-channels. However, it appears that already a large value for the A/A ratio would be
a significant signal. Not to be forgotten are secondary effects, e.g. those due to s§ annihilation into ¥y
(and infrared glue) in the plasma. Different experiments will be sensitive to different energy ranges.
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Fig. 2.7. First order diagrams for s§ production reactions; (a) qq— s§, Fig. 2.8. Evolution of relative s population per baryon number as
(b) gg—ss. function of time in the plasma. For T = 160 MeV chemical saturation is
noticeable in about 2x 10"%sec, the anticipated minimal plasma
livetime.

2.6. Summary and outlook

Our aim has been to obtain a description of highly excited hadronic matter. By postulating a kinetic
and chemical equilibrium we have been able to develop a thermodynamic description valid for high
temperatures and different chemical compositions. Along this line we have found two physically
different domains; firstly a hadronic gas phase, in which individual hadrons can exist as separate entities,
but are sometimes combined into larger hadronic clusters; and secondly, a domain in which individual
hadrons dissolve into one large cluster consisting of hadronic constituents — the quark-gluon plasma.

In order to obtain a theoretical description of both phases we have used some ‘‘common’ knowledge
and a plausible interpretation of the currently available experimental facts. In particular, in the case of
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the hadronic gas, we have completely abandoned a more conventional Lagrangian approach in favour
of a semiphenomenological statistical bootstrap model of hadronic matter that incorporates those
properties of hadronic interaction which are, in our opinion, most important.

In particular, the attractive interactions are included through the rich, exponentially growing
hadronic mass spectrum 7(m? b) while the introduction of a finite volume for each hadron is
responsible for an effective short-range repulsion. We have neglected quantum statistics in the hadronic
gas phase since a quantitative study reveals that this is allowed above T ~50MeV. But we allow
particle production, which introduces a quantum physical aspect into the otherwise “classical” theory of
Boltzmann particles.

Our considerations lead us to an equation of state for hadronic matter which reflects what we have
included in our considerations. It is the quantitative nature of this approach that allows a detailed
comparison with experiment. It is important to observe that the predicted temperatures and mean
transverse momenta of particles agree with the experimental results available at Ey.,/A =2 GeV
[BEVELAC-] and at 100 GeV [ISR -] as much as a comparison is permitted.

The internal theoretical consistency of this description of the gas phase leads, in a straightforward
fashion, to the postulate of a first order phase transition to a quark-gluon plasma. This second phase is
treated by a quite different method; in addition to the standard Lagrangian quantum field theory of
(“weakly”) interacting particles at finite temperature and density, we also introduce the phenomenologi-
cal vacuum pressure and energy density B. This term is required in a consistent theory of hadronic
structure. It turns out that B*~ 190 MeV is just, to within 20%, the temperature of the quark phase
before its dissociation into hadrons. This is similar to the maximal hadronic temperature T, = 160 MeV.

Perhaps the most interesting aspect of our work is the realization that the transition to quark matter
will occur at very much lower baryon density for highly excited hadronic matter than for matter in its
ground state (T = 0). Using the currently accepted value for B, we find that at v ~2-3v,, T = 150 MeV,
a quark phase may indeed already be formed. The detailed study of the different aspects of this phase
transition must still be carried out. However, initial results look very encouraging, since the required
baryon density and temperatures are well within the range of fixed target, heavy nucleon collisions with
100 GeV per nucleon. We look forward to such a heavy ion facility which should provide us with the
required experimental information.
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