
STRANGE PARTICLE SIGNATURES OF
THE HADRONIC MATTER DECONFINEMENT PHASE TRANSITION1

Johann Rafelski

Department of Physics
University of Arizona, TUCSON AZ 85721

ABSTRACT: Relativistic nuclear collisions offer a unique opportunity to study hot
hadronic matter and to discover the quark gluon plasma. The large scales of the
colliding nuclei increase the likelihood of generating highest energy densities for
longest available times. Current results suggest that even at 200 A GeV one needs
hardly more than the diameter of a heavy nucleus, 15 fermi, to stop a 32 S-projectile.
Strange particle yields are suggestive of new reaction mechanisms and prove to be a
most useful diagnostic tool in the study of nuclear matter under extreme conditions.

OVERVIEW

The critical question posed by relativistic heavy ion experiments is that of de-
confinement and quark gluon plasma (QGP) formation: I am eagerly awaiting
first results on multi-strange antibaryons, which I consider most informative
observables of the deconfined QGP phase. Multi-strange antibaryons can pro-
vide this crucial information as they are formed predominantly in phase space
regions in which a very high strangeness density is present since they are pro-
duced almost totally by glue-glue processes in the QGP. The over-abundance
of multistrange antibaryons stemming from QGP formation could, in theory,
be reduced in a scenario where the antibaryons would be kept together for
an anomalously long time, during which re- equilibration of strangeness would
occur. However, the effects of such a long lifetime of the hadronic phase should
then also be discernible in other strange and non-strange observables. Further-
more, we can focus our “cameras” on early times in the reaction by looking
at multi-strange antibaryons at moderately high transverse momenta above
1 GeV which are more representative of the bare particle abundances in the
high energy density initial fireball, as hadronization mechanisms do not pop-
ulate this ‘hard’ region abundantly. Aside from its most important role as
a characteristic observable of the deconfinement phase transition, observation
of strange particle flows provides information about the reaction mechanisms
governing relativistic nuclear collisions: for example the Λ abundance traces
out the flow of baryon number. In general, the large strangeness production

1From: Hadronic Matter in Collision 1988, pages 776–790 (World Scientific 1989), ISBN
9971-50-849-4, P. Carruthers, J. Rafelski editors. Proceedings of an international conference
held in Tucson, AZ October 6-12, 1988. Concluding article in section: Strangeness and
Phase Transitions.
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rates in plasma permit us to anticipate near symmetry between u, d, s - quark
flavors.

The most critical input needed for a quantitative prediction of strange
particle abundances and understanding their source is the nuclear stopping
power. In this paper, I briefly survey some theoretical tools, not yet described
with sufficient detail during this meeting, which are needed to understand and
interpret the results related to nuclear stopping, and indicate how I view dif-
ferent aspects of the experiments, first with respect to the question of nuclear
stopping power, and secondly concerning possible new reaction mechanisms in
strange particle production.

NUCLEAR MATTER STOPPING AND PARTICLE SPECTRA

I begin with some simple matters which arise mostly from general definitions
of the variables and remain true irrespective of the details of the reaction.
For the purpose of definition and clarity of notation let me restate in the
following a few well-known relations. The appropriate variable, rather than
the longitudinal (i.e. along the collision axis) momentum p‖, is the rapidity y
as it is additive under changes of the frame of reference along this axis. First
we recall:

p‖ = E⊥ sinh y ,

E = E⊥ cosh y ,

E⊥ =
√
m2 + p2

⊥ . (1)

For practical reasons, one often refers in an experiment which does not measure
the mass of a particle to so-called pseudo-rapidity η.

η = ln(cot θ/2) , (2)

where θ is the scattering angle of the emerging particle in the laboratory frame.
Rewriting Eq. 2 in terms of momenta we find:

η = ln
p+ p‖
p⊥

, (3)

which should be compared to the definition of y written in a similar form:

y = ln
E + p‖
E⊥

. (4)

We see that η is asymptotically equal to y in the limit of m being negligible
compared to p⊥. This cannot always be true; we know that particles are pro-
duced with an exponential p⊥ distribution and hence many will have small p⊥.
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Especially in the baryon-rich region, the error inherent in the usage of pseudo-
rapidity may be unacceptably large, unless the acceptance of the experiment
is limited to large p⊥.

The rapidity particle spectrum dn/dy is derived by recalling that the
rapidity in Eq. 1 replaces the longitudinal momentum as a variable. Thus if
f(p⊥, p‖) = f̄(E; y) is the particle spectrum, the rapidity spectrum is simply
given by

dn(y)

dy
=

∫
d2p⊥

dp‖
dy
|p⊥ f̄(E, y) ,

=
2π

cosh2 y

∫ ∞
m cosh y

dEE2f̄(E, y) . (5)

This equation is in the CM-frame; in order to transform it into another (e.g.
lab) reference frame, y is simply replaced by (y − ycm) on the right hand side.
Note that if the momentum distribution f were to be spherically symmetric in
the CM-frame, f̄ would be a function of E only. Hence, for massless particles
with any spherical momentum spectrum in the CM-frame characterized by the
sum of all particle momenta being zero, the y−spectrum is of the 1/cosh2

type, which in the laboratory has the appearance of a Gaussian centered at
ycm, with a FWHM width of about 1.75 rapidity units. I did not assume
here any specific “thermal” form for f̄ , as has been implied elsewhere. If the
dominant scale of energy is the particle mass, the effective range of the integral
in Eq. 5 is very limited, and indeed calculations with typical distributions show
that the normalized distribution narrows with increasing m, approaching the
δ−function form.

In most instances, a particle distribution still wider than the case m = 0
in Eq. 5 is observed because the decay of meson resonances further widens the
distribution: pions, as the lightest hadronic particles, are often descendants
from hadronic resonances. Indeed, assuming thermal relative abundances for a
thermal ρ-spectrum at T ≈ 190MeV , half of the pions are secondary. Consider
for example the decay of the ρ-meson into two pions. Each pion carries energy
Eπ = mρ/2 ≡ γmπ. If by chance the pions are aligned with the ‖- axis we
have a pion of rapidity yd =1.67, cf. Eq. 4. Averaging over angles, the rapidity
distribution of pions originating from ρ decays is found to be

dn(2)(y)

dy
=

γ√
γ2 − 1

∫ +yd

−yd

dy1
1

cosh2y1

dn(1)(y − y1)

dy
, (6)

where yd = ln (γ +
√
γ2 − 1). The distribution Eq. 6 is normalized to two as

there are two pions for each ρ-meson. Calculation shows that, at T=200 MeV,
a rather narrow ρ -rapidity distribution leads to a pion distribution with a
width of about two units of rapidity.

Uncertainty about the participating masses of the projectile and target
nuclei in the common fireball can also be translated into an expression for
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uncertainty in y. We first determine the central rapidity, that is, the rapidity of
the hypothetical system of two colliding objects, such that the net longitudinal
momentum of all emerging particles, and hence the longitudinal momentum
brought into the reaction by projectile and target, add up to zero. In order
to predict the frame of reference in which this is true, we must know the
participating mass of the projectile and target. In a symmetric collision of,
say, S on S, this is clearly possible, but even in this symmetric case not for each
individual collision but only as an average over all collision events. In the case
of heavy targets, the number of target nucleons participating in the collision
also depends on the impact parameter between the colliding nuclei. Even if all
projectile nucleons participate in the reaction, however, the number of target
participants can, for heavy targets, still fluctuate strongly, for both geometric
and dynamical reasons, since the stopping is probably due to a nonlinear, and
hence unpredictably chaotic, response of the medium.

I find that the central rapidity of two colliding masses, as defined above,
is:

ycm = yp/2− 1/2 ln (Mt/Mp +
Ep − pp
Mp

) + 1/2 ln (1 +
Mt

Ep + pp
)

≈ yp/2− 1/2 ln (Mt/Mp) . (7)

Here, the lower indices p, t refer respectively to the projectile and target par-
ticipating in the collision. Using Eq. 7 it follows that

δycm =
1

2

δMp

Mp

− 1

2

δMt

Mt

. (8)

For a “reasonable” range of triggered events, we are selecting a range of Mt,Mp

which leads according to Eq. 8 to an uncertainty of ycm which is significant,
perhaps as high as 0.3 units of rapidity in the ensemble of the collision events.

Thus we see that these two effects (decay and fluctuation of the target
mass) can widen the pion rapidity distribution by about 0.5 rapidity units to
perhaps a width of 2.3 units, not quite reaching the width of 2.8 units in the
rapidity spectrum seen by some experiments. The point is that, as these exam-
ples show, such width is not necessarily indicative of nuclear transparency and
only detailed modeling which includes the numerous effects contributing to the
widening of the distribution will permit one to judge this point. Indeed, I am
ready to argue that the observed peaked rapidity distribution signals the un-
expectedly nonlinear response of the colliding system and entails unexpectedly
large nuclear stopping at CERN energies.

Further qualitative information pertinent to this discussion can be ob-
tained by studying the amount of transverse energy generated in these colli-
sions: the higher the transverse energy, the less memory the system has of the
collision axis (transparency). In order to get to the heart of this problem, I
need to backtrack to some quite elementary matters. The quark structure of
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nuclei tells us that it is virtually impossible to find a parton in the nucleus
with, say, a fraction x = 3 of the total momentum (x = 1 is the kinematic
limit per nucleon, hence x = Ap is the kinematic limit for the whole nucleus).
Consequently, a nucleus has to be treated as consisting of Ap loosely bound
nucleons, with internal momentum structure reaching out to perhaps x ≈ 1
rather than x = Ap. This implies that it is inappropriate to treat the projec-
tile and target as monolithic blocks of matter. The proper way to understand
the collision kinematics involves the visualization of the collision process as
a series of successive collisions: progressive transfer of longitudinal energy to
transverse motion reduces the available

√
s in subsequent collisions. In order

to obtain the energy actually available, we must allow for the fact that all par-
ticles have a significant motion with respect to the CM-frame which arises in
consequence of numerous individual microscopic collisions of the constituents.
(These remarks imply that Eq. 7 above is not quite correct. I find an additional
shift downward of 0.1 rapidity units, but will not pursue this point here.)

Next, we consider the energy and transverse energy of a fireball in the
laboratory frame, assuming that it retains no memory of the collision axis after
the collision. This is equivalent to saying that f̄ is isotropic in the fireball rest
frame and therefore a function of E only. The question is: how large can the
transverse energy be; how can different colliding systems be related to each
other? We return to Eq. 5. In order to find the rapidity distribution of energy,
the energy spectrum of particles in the fireball rest frame f̄ must be weighted
with the energy of each individual particle i in that frame, Ei

f = Ei
⊥ cosh yi,cm,

which in the laboratory frame is

Ei
lab = Ei

⊥ cosh (yi,cm + ycm) , (9)

and so the total fireball energy rapidity spectrum in the lab is

dEf
lab

dy
=
d
∑
Ei
lab

dy
=

∫
d2p⊥

dp‖
dy
|p⊥E⊥ cosh(y + ycm)f̄(E)

= 2π
cosh(y + ycm)

cosh3 y

∫ ∞
m cosh y

dE E3f̄(E) . (10)

Integrating over y, only the even component of cosh(y + ycm) survives and so

Ef
lab =

∫ +∞

−∞
dy

d
∑
Ei
lab

dy
= 2π cosh ycm

∫ +∞

−∞

dy

cosh2 y

∫ ∞
m cosh y

dE E3f̄(E) .

(11)
The coefficient of cosh ycm can be identified with the observable invariant mass
Mf of the fireball created in the collision,

Ef
lab = γfMf = cosh ycmMf , (12)
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as the total fireball has zero p⊥. The origin of Eq. 12 is easily explained by
noticing that Eq. 1 implies, with p‖ = p cos θ,

dy

cosh2 y
=

p

E
sin θ dθ , (13)

which immediately permits us to write Mf as

Mf = 2π
∫ π

0
dθ sin θ

∫ ∞
0

dp p2Ef̄(E) =
∫
d3p Ef̄(E) . (14)

In other words, the energy content of the fireball in its rest frame is identical
to its mass, a formulation consistent with normal relativistic nomenclature.

Finding the rapidity spectrum of the fireball transverse energy is even
easier as all transverse energies Ei

⊥ and Ef
⊥ are Lorentz-invariant. The cosh(y+

ycm)-term in Eq. 10 simply falls away and we obtain

dEf
⊥

dy
=
d
∑
Ei
⊥

dy
=

∫
d2p⊥

dp‖
dy
|p⊥E⊥f̄(E)

=
2π

cosh3 y

∫ ∞
m cosh y

dEE3f̄(E) . (15)

If the constituents of the fireball are effectively massless, the transverse energy
distribution is therefore of the 1/ cosh3(y+ ycm)-form and the integral over all
y can be carried out analytically,

Ef
⊥ =

∑
Ei
⊥ =

Mf

2

∫ +∞

−∞

dy

cosh3y
=
π

4
Mf . (16)

Thus in the case of isotropic f̄ , up to 80% of the fireball’s rest system energy
may end up in transverse motion. More importantly, Eq. 15 indicates that the
distribution of transverse energy can provide additional information about the
stopping power, in particular if it is measured as function of rapidity.

This brings us to the question how Mf can be derived from measured
rapidity distributions of transverse energy. We proceed as in Eqs. 10 and 15:
The total available energy in the laboratory frame is the sum of the projectile
energy and that part of the target mass which participates in the collision, Mt:

Ef
lab = Ep,lab +Mt =

∑
i

Ei
lab =

∑
i

Ei
⊥ cosh(yi,cm + ycm) ,

= cosh ycm

∫ +∞

−∞
dy cosh y

(
d
∑
Ei
⊥

dy

)
,

=
Ef
⊥ cosh ycm
(πΓ)1/2

∫ +∞

−∞
dy cosh y e−y

2/Γ , (17)

where we have assumed for simplicity that the transverse energy distribution
has a Gaussian form (rather than the more complex form of Eq. 15):

1

Ef
⊥

dEf
⊥

dy
=

1

(
∑
Ei
⊥)

d (
∑
Ei
⊥)

dy
=

1

(πΓ)1/2
e−y

2/Γ . (18)

6



The integral is straightforward and we obtain

Ef
lab = Ef

⊥ cosh ycm eΓ/4 , (19)

and so, in light of earlier observations,

Mf = Ef
⊥ e

Γ/4 . (20)

This means that measurement of total transverse energy and the width of the
distribution Γ give us a measure of Mf .

Normally, experimental results are presented as a distribution of how of-
ten one finds a particular transverse energy within a sample of triggered events.
Ideally, this would be a Gaussian function. However, at low transverse ener-
gies one sees a significant tail, while the expected structure begins to emerge
at high transverse energies, especially for Sulfur-heavy nucleus collisions. This
can be due to a distribution in ycm arising from the fluctuation of the number
of participating projectile and target nucleons at a given triggering condition.
To establish a quantitative relation between the transverse energy and partic-
ipating masses, I rewrite Eq. 16 in several ways:

ln
∑

Ei
⊥ = ln

π (Mp cosh yp +Mt)

4 cosh ycm
,

ln
∑

Ei
⊥ = ln

π

4
+ ycm + lnMt ,

ln
∑

Ei
⊥ = ln

π

4
+

1

2
yp +

1

2
ln(MtMp) , (21)

where we used the relation Eq. 7. We can therefore write

dNevent

d(ln
∑
Ei
⊥)

=
dNevent

d(ln
√
MtMp)

, (22)

suggesting that transverse energy distributions should be shown on a logarith-
mic transverse energy scale. This permits not only to relate the distribution
of transverse energy events to the distribution of participating projectile and
target masses, but also to relate results obtained with different projectiles and
shows how Mt changes with Mp.

Using the approach presented above, I have analyzed some of the data
involving 60 and 200 GeV Oxygen and Sulfur collisions with heavy nuclear tar-
gets, employing the equation of state of a perturbative QGP with αs = 0.6. I
find near-complete stopping in this data. Others may well get different results,
since experiments are biased by triggering conditions which sample some par-
ticular distribution of events with more or less stopping. However, as strange
particles are dominantly made in dense fireballs, particularly in QGP, the best
way to proceed is to start with a strangeness trigger, e.g. a kaon, and then
to analyze signals such as strange antibaryons for questions related to QGP
formation or hyperons for measurement of baryon density.
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FIRST RESULTS ON STRANGE PARTICLES

After the extensive discussion at this meeting of the recent results and the theo-
retical and experimental surveys there is little space left, if any, for another
assessment of the current experimental and theoretical position. But I will
permit myself today to take some subjective positions and re-evaluate some
results.

Experiment E802 with 14.5 A GeV/c Si-Au collisions at Brookhaven has
obtained the transverse energy spectra of charged strange and non-strange
particles at various rapidities. Let us first look at the protons in the collision:
has the baryon number been stopped? Recall first that, according to Eq. 1, the
transverse energy is related to total energy by 1/cosh y. Hence, if the particle
spectrum is a function of E rather than of E⊥, a cut through an E⊥ spectrum
at fixed rapidity will lead to a rapidity- dependent slope parameter, changing
according to cosh−1 (y + ycm). The slope parameter of transverse momentum
distributions of protons as a function of rapidity shows just this behavior, with
the central rapidity ycm = 1.2 consistent with the Si-tube(Au) kinematics, as
noted by E802. This peak is also seen in the peaked charged particle pseudo-
rapidity density. These results indicate the presence of a baryon-rich central
fireball.

We next look at the strange particle spectra obtained by E802. My past
studies lead me to expect that the s-quarks will be mostly bound in baryons,
while the s̄-quarks will be mostly found in kaons (K0, K+), under the as-
sumption that relative chemical equilibrium is established in the dense matter.
Hence, assuming that the abundance of pions is charge-symmetric, and using
them as a normalizer, it is not surprising to see that K+ are more abundant
than K−. What is unexpected is the result that at E⊥ > 0.6GeV the yield
of K+ is equal to the yield of π+. This is shown in Fig. 1, drafted from the
report of the E802 collaboration. In the upper portion the negatives and in
the lower portion the positives are shown. The data is preliminary as not all
acceptance corrections have been applied: however, the rapidity windows for
the respective sets are similar, and hence the ratios mentioned above will very
likely remain the same. These results imply in particular similar ability to form
s̄ and d̄ by the nuclear fireball. This is a very significant experimental finding
and it would be most interesting to see if it is an accidental coincidence of
particle abundances or if it persists for different collision partners at different
energies.

Another most striking feature of the data shown in Fig. 1 is the similar
structure of the spectra of strange and non-strange mesons, with the slope
parameter being about 170 MeV, which points to a thermal mechanism of
particle formation. It is most important that the simulations of strangeness
production in conventional schemes like Fritiof, when normalized to the pion
yield, fail to account for the strangeness abundance by a factor which can be
as high as four. On the other hand, the data is compatible with the following
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Figure 1: BNL E802 π/K invariant cross sections versus transverse mass (ar-
bitrary units) for Si-Au at 14.5 A GeV/c. Exponential lines drawn by hand
(after S. Steadman).

simple QGP model: in T=170 MeV QGP, half of the strangeness phase space
can be saturated before the fireball dissociates. Then we know that due to the
large baryo-chemical potential the s̄ abundance is similar to the d̄ abundance,
and we can expect that this is reflected in the ‘hard’ (E⊥ >700 MeV) meson
abundances.

Rather large slope parameters are observed for protons (230 MeV) and
deuterons (350 MeV) in the same rapidity interval around y =1.2. One should
note that the recombination of two thermal nucleons into a deuteron would
yield a spectrum with the same thermal slope; only the pre-exponential power
describing the density of states in an energy interval changes. This indicates
that these hard baryons do not arise from a thermally equilibrated environ-
ment. The most obvious explanation is a side splash of quark matter brought
into the collision, similar in nature to Greiner’s ideas from 15 years ago con-
sidered at the time for the nucleons (see his report).

I believe that this experimental evidence is already totally convincing with
regard to the behavior of the baryon number and hence conclude that up to
E = 14.5 A GeV/c on a heavy target practically total stopping will be found for
near-zero impact parameter collisions, with possible collective hydrodynamic
three-dimensional baryon (valence quark) flow. The data on strangeness are
consistent with the QGP hypothesis. If more data were available at different
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energies and target-projectile combinations, this reaction mechanism could be
ascertained. At present, we only have hard evidence for the formation of
nuclear matter of high energy density; any further reaching interpretation of
the BNL E802 data is premature.

Complementary data on strange particle production in highly excited nu-
clear matter has been shown in the KEK results of 3 and 4 GeV/c p̄ annihilation
on Ta: a strongly peaked, anomalously large thermal distribution of Lambdas
around the laboratory rapidity 0.25 has been found. In Fig. 2 the results
presented by Miyano (KEK) are shown: in order to emphasize the difference
to the p̄p reactions the data in this figure is presented shifted to the rapidity of
the elementary reaction on individual nucleons. We see that the strong shift
in the rapidity distribution and central rapidity is that of a reaction with a
matter tube in the target in front of the projectile. The shape displayed by
the distributions corresponds closely to the thermal rapidity spectrum of about
100 MeV. I presented a detailed discussion of these results in terms of QGP
elsewhere and I will not repeat the arguments again, except to mention that,
were it not for the relatively large Λ̄ abundance seen, I could agree with the
suggestion of C. Dover and P. Koch (see their report, also for references) that
these results are also obtainable with a model of a dense hadronic gas. Again,
a more complete analysis will only distinguish between these two competing
reaction channels, and this requires much more data, both as a function of p̄
energy and the size of the target. As with the BNL E802 data, one “point”
in the parameter space can always be fitted by several models. We need the
systematic behavior of these global observables in order to be able to argue
the case for the different hadronic phases.

What about CERN experiments at 60 and 200 A GeV with Oxygen and
Sulfur projectiles? Today everybody seems to agree that there is still a large
amount of stopping, in particular in collisions involving heavy nuclei: The
baryon number is not shooting out of the central rapidity region, nor have the
hadronic fireballs separated into projectile and target fragmentation regions.
We are also continuing to see large transverse momenta.

Consider the rapidity distribution of particles: the NA35 report shows
little difference between the rapidity distribution of negatives produced in
symmetric S-S collisions and p-p collisions at the same energy per nucleon.
This could be taken to indicate that little difference, if any, is encountered
in these collisions, whatever the underlying reaction mechanism. Earlier data
from NA35, however, showed a strongly peaked rapidity distribution of nega-
tive particles in collisions on heavy targets, and we have seen in the report of
M. Tincknell a highly peaked transverse energy distribution, as a function of
rapidity. Other evidence for a geometric and hence totally inelastic reaction
comes from the A

2/3
t behavior of the transverse energy. In all cases, the posi-

tion of the multiplicity and transverse energy peak is as expected for complete
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Figure 2: KEK rapidity spectrum of Λ in p̄−Ta annihilations at 3 and 4 GeV/c.
Solid curves are A2/3 scaled p̄p spectra. Rapidity 0 corresponds to the colliding
p̄p system (after K. Miyano).

stopping of the projectile by the participating target matter, and the width of
the distribution is compatible with our discussion presented above.

Maybe the conclusion to be drawn is not to pursue S-S collisions, as the
chance of a punch-through is too great; perhaps we should concentrate our ef-
fort on heaviest targets, as there is a greater chance to stop the projectile within
the 15 fm diameter of the target nucleus. This point is further supported by
the observations of P. Stevenson about the geometric nature of the p-Nucleus
interaction. Both these points, excess of u,d quarks in the central region as well
as the sharp edge geometry of the collision, do not preclude “transparency”, in
particular in the sense that different reaction mechanisms are of importance.
A quantitative estimate is needed about the relative frequency of the various
reactions. A step in this direction was undertaken; however, the reported ini-
tial positions stated in the report of P. Braun-Munzinger differ from our above
observations about the experimental results to such a degree that we cannot
take the analysis presented there as being conclusive. The experimental data
must first be consistent with the assumptions of this analysis.

We have seen several specific presentations of the CERN data addressing
the question: is there any signature of QGP in the current strange particle
results? The reports of M. Gazdzicki and I. Derado (NA35 collaboration), see
Figs. 3 and 4, have focused on the absolute Λ abundance, the report of E.
Quercigh (WA85 collaboration) has shown first results on strange antibaryons,
and in particular the relative strength of Λ̄/Λ were presented as a function of
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Figure 3: NA35 Λ versus charged particle multiplicity in S-S collisions at 200
A GeV. Solid line: superposition yield of nucleon-nucleon collisions (after M.
Gazdzicki).

Figure 4: NA35 Λ transverse momentum spectra from O-Au 200 A GeV col-
lisions. Solid line: Fritiof simulation (after I. Derado).
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the transverse momentum in the central rapidity region, see Fig. 5. The first
rapidity distribution of Λ of NA36 was shown by D. Greiner.

In my view, the main interpretation arising from these reports is: there
is a clear signal of something unusual happening; there is more strangeness
than expected from particle cascades or other conventional simulations, most
boldly pointed out in the report of M. Gazdzicki (see Fig. 3), and there
are more Λ̄’s than one would normally anticipate in the WA85 data, even
taking the optimistic view that the p̄/p ratio from p reactions is a guide to
the expected abundance. This enhancement of Λ̄/Λ seems to depend little
on the multiplicity of charged particles observed in coincidence. But there
may be some transverse momentum dependence, as shown in Fig. 5. In a
QGP approach, the high momenta are populated early on, and the decrease
in the ratio may signal a greater baryon density in the early stages of the
fireball, favoring Λ production and inhibiting light anti-quarks needed. In
order to verify these observations, one would need to consider multi-strange
baryons and antibaryons, which should show a flat or even increasing ratio as
a function of the transverse momentum. It is interesting to observe that the Λ
enhancement at high p⊥ is also very clearly present in the data of I. Derado, c.f.
Fig. 4. Although he is disclaiming it in his paper, his results show enhancement
of the yield in the central rapidity region for O-Au reactions, by one order of
magnitude for p⊥ > 1.5GeV/c. The most notable point of the NA36 data is
the concentration of the yield in the central rapidity region. Clearly, many of
these results are preliminary and therefore theoretical implications should not
be taken too far right now.

While the presented results on strange particle abundances agree almost
exactly with earlier predictions about the QGP response, we have presently
only one point in the parameter space, and it is conceivable that an alternative
interpretation of the data may be found; however, a price will be paid in terms
of other observables which may turn out to be inconsistent with the general
reaction picture. For example, recent work which attempted to produce a lot
of strangeness in hadronic gas needed to employ high temperature to overcome
the Kaon production threshold. However, there is no sign in particle spectra
of temperatures as high as 350 MeV, not to mention the internal inconsistency
of an approach in which higher meson and baryon resonances are neglected
to reduce the specific heat of the hadronic gas. Secondly, efforts to dilute the
strangeness signal of QGP by producing many pions via soft processes have
to be contrasted with entropy balancing: if the pions are produced after the
QGP phase, then the initial entropy in the plasma was much less than currently
believed, implying a much lower temperature in the plasma than qualitatively
acceptable. We see again an internal inconsistency of the approach. It is
therefore very tempting to conclude that indeed we are on the right track
toward discovery of the QGP, and that strangeness is a suitable signature of
new phenomena arising in highly excited and compressed nuclear matter.
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Figure 5: WA85 Λ̄/Λ versus p⊥ for S-W at 200 A GeV, compared to p-W at
200 GeV p̄/p ratio at x=0 (after E. Quercigh).
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