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Laboratoire de Physique Théorique et Hautes Energies
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Recent advances in measurements of αs(MZ) allow to refine the rates of thermal flavor
production in quark-gluon plasma. We employ QCD renormalization group to evaluate
the running of QCD parameters αs(µ) and mi(µ), i = s, c down to and below 1 GeV
scale of interest in thermal strangeness production. Using these results we obtain the low
density thermal relaxation time for glue based production of s and c quarks and discuss
the QGP flavor observable.

1 Introduction

The understanding of (thermal) production of (heavy) flavor and the associated chem-
ical equilibration 1 is of considerable interest as a diagnostic probe of the properties of
the deconfined quark-gluon plasma (QGP) phase of strong interactions. QGP forma-
tion in relativistic nuclear collisions at sufficiently high energy is expected on basis of
(lattice) QCD studies and many other, more phenomenological, explorations of the
behavior of strongly interacting particles under extreme conditions.

Our objective here is to obtain a computational framework allowing to eliminate
the need for an arbitrary coupling constant in the two particle collision cross section
of flavor production 2 and to obtain the relevant two particle rates using running
QCD parameters αs(µ) and mi(µ), i =s, c. While theory and experiment constrain
now sufficiently the coupling strength αs, considerable uncertainty still remains in
particular in regard of strange quark mass scale.

The generic angle averaged two particle cross section for (heavy) flavor production
processes g + g → f + f̄ and q + q̄ → f + f̄ , are:
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where W (s) =
√

1 − 4m2
f /s , and both the QCD coupling constant αs and flavor

quark mass mf will be in this work the running QCD parameters. In this way a large
number of even-αs diagrams contributing to flavor production is accounted for.

What remains unaccounted in our work is another class of processes in which at
least one additional gluon is present. While only in very high density environment we
could imagine relevant contributions from three body initial state collisions, presence
of an additional soft gluon in the final state remains unaccounted for today. Leading
diagrams contain odd powers of αs and their generic cross section is in general infrared
divergent, requiring a cut-off which for processes occurring in matter is provided
by the interactions (dressing) with other particles present. The process in which a
massive ‘gluon’, that is a quasi-particle with quantum numbers of a gluon, decays into
a strange quark pair, is partially included in the resummation that we accomplish in
the present work. At the present time we do not see a systematic way to incorporate
any residue of this and other effects, originating in matter surrounding the microscopic
processes, as work leading to understanding of renormalization group equations in
matter (that is at finite temperature and/or chemical potential) is still in progress .3

We discuss in next section the running of mass and coupling constant and turn to
the evaluation and discussion of the relaxation times for flavor production in section
3. We discuss the relevance of the flavor observable of QGP and describe how these
relaxation times allow to compute the hadronic particle yields in section 4.

2 Running QCD Parameters

To determine the two QCD parameters required, we will use the renormalization
group functions β and γm:

µ
∂αs

∂µ
= β(αs(µ)) , µ

∂m

∂µ
= −m γm(αs(µ)) . (3)

For our present study we will use the perturbative power expansion in αs:

βpert − α2
s [ b0 + b1αs + . . . ] , γpert

m = αs [ c0 + c1αs + . . . ] , (4)

For the SU(3)-gauge theory with nf fermions the first two terms (two ‘loop’ order)
are renormalization scheme independent and we will restrict our study to this order
in this report :4,5

b0 =
1

2π

(
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3
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)
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1

4π2

(
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)

, (5)

c0 =
2

π
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1

12π2

(
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3
nf

)

. (6)

The number nf of fermions that can be excited, depends on the energy scale µ.
We have implemented this using the exact phase space form appropriate for the terms
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linear in nf :

nf(µ) = 2 +
∑

i=s,c,b,t
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)

Θ(µ − 2mi) , (7)

with ms = 0.16 GeV, mc = 1.5 GeV, mb = 4.8GeV. We checked that there is very
minimal impact of the running of the masses in Eq. (7) on the final result, and will
therefore not introduce that ‘feed-back’ effect into our current discussion. The largest
effect on our solutions comes from the bottom mass, since any error made at about
5 GeV is amplified most. However, we find that this results in a scarcely visible
change even when the mass is changed by 10% and thus one can conclude that the
exact values of the masses and the nature of flavor threshold is at present of minor
importance in our study.

We show the result of numerical integration for αs in the top portion of Fig. 1. First
equation in (3) is numerically integrated beginning with an initial value of αs(MZ).
We use in this report the August 1996 World average :6 αs(MZ) = 0.118 for which
the estimated error is ±0.003 . This value is sufficiently precise to eliminate much of
the uncertainty that has befallen much of our earlier studies .2,7 In addition, the thin
solid lines present results for αs(MZ) = 0.115 till recently the preferred result in some
analysis, especially those at lower energy scale. As seen in Fig. 1, the variation of αs

with the energy scale is substantial, and in particular we note the rapid change at
and below µ = 1 GeV, where the strange quark flavor formation occurs in hot QGP
phase formed in present day experiments at 160–200 A GeV (SPS-CERN). Clearly,
use of constant value of αs is hardly justified, and the first order approximation often
used:

αs(µ) ≡ 2b−1
0 (nf)

ln(µ/Λ0(µ))2
, (8)

leads to a strongly scale dependent Λ0(µ) shown in the middle section of Fig. 1. Thus
it also cannot be used in the evaluation of thermal strangeness and charm production.

With αs(µ) from the solutions described above, we integrate the running of the
quark masses, the second equation in (3). Because the running mass equation is linear
in m, it is possible to determine the universal quark mass scale factor

mr = m(µ)/m(µ0) . (9)

Since αs refers to the scale of µ0 = MZ , it is a convenient reference point also for quark
masses. As seen in the bottom portion of Fig. 1, the change in the quark mass factor
is highly relevant, since it is driven by the rapidly changing αs near to µ ≃ 1 GeV. For
each of the different functional dependences αs(µ) we obtain a different function mr.
The significance of the running of the charmed quark mass cannot be stressed enough,
especially for thermal charm production occurring in foreseeable future experiments
well below threshold, which amplifies the importance of exact value of mc .

Given these results, we find that for αs = 0.118 and ms(MZ) = 90±18 MeV a low
energy strange quark mass ms(1GeV) ≃ 200±40 MeV, in the middle of the standard
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Figure 1: αs(µ) (top section); the equivalent parameter Λ0 (middle section) and
mr(µ) = m(µ)/m(MZ) (bottom section) as function of energy scale µ. Initial
value αs(MZ) = 0.118 (thick solid lines) and αs(MZ) = 0.115 (thin solid lines).
In lower section the dots indicate the strangeness pair production thresholds for
ms(MZ) = 90 MeV, while crosses indicate charm pair production thresholds for
mc(MZ) = 700 MeV.

range 100 < ms(1GeV) < 300 MeV. Similarly we consider mc(MZ) = 700± 50 MeV,
for which value we find the low energy mass mc(1GeV) ≃ 1550 ± 110 MeV, at the
upper (conservative for particle production yield) end of the standard range 1 <
mc(1GeV) < 1.6 MeV. There is another nonperturbative impact of mass running,
related to the mass at threshold for pair production mth

i , i = s, c, arising from the
solution of:

mth
i /mi(MZ) = mr(2m

th
i ) . (10)

This effect stabilizes strangeness production cross section in the infrared: below√
s = 1 GeV the strange quark mass increases rapidly and the threshold mass is

considerably greater than ms(1 GeV). We obtain the threshold values 2mth
s = 605

MeV for αs(MZ) = 0.118 and 2mth
s = 560 MeV for αs(MZ) = 0.115. Both values

are indicated by the black dots in Fig. 1. For charm, the running mass effect plays
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Figure 2: QGP strangeness relaxation time, for αs(MZ) = 0.118, (thick line) and =
0.115 (thin line); ms(MZ) = 90 MeV. Hatched areas: effect of variation of strange
quark mass by 20%. Dotted: comparison results for fixed αs = 0.5 and ms = 200
MeV.

differently: since the mass of charmed quarks is listed in tables for µ = 1 GeV, but
the value of the mass is above 1 GeV, the production threshold mass is smaller than
expected (i.e., listed value). For mc(MZ) = 700 MeV the production threshold is
found at ∼ 2mth

c ≃ 2.3 GeV rather than 3.1 GeV that would have been expected for
the mc(1 GeV). This reduction in threshold enhances thermal production of charm,
especially so at low temperatures.

3 Strangeness and Charm Thermal Relaxation Times

The thermal average of the cross section is the invariant production rate per unit
time and volume:

As ≡ Agg + Auū + Add̄ + . . .

=
∫

∞

4m2
s

ds2sδ(s − (p1 + p2)
2)
∫

d3p1

2(2π)3E1

∫

d3p2

2(2π)3E2

×
[

1

2
g2

gfg(p1)fg(p2)σgg(s) + nfg
2
qfq(p1)fq̄(p2)σqq̄(s) + . . .

]

. (11)

The dots indicate that other mechanisms may contribute to strangeness produc-
tion. The particle distributions fi are in our case thermal Bose/Fermi functions (for
fermions with λq = 1.5), and gq = 6, gg = 16 . For strangeness production nf = 2,
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and for charm production nf = 3 . From the invariant rate we obtain the strangeness
relaxation time τs shown in Fig. 2, as function of temperature:

τs ≡
1

2

ρ∞
s (m̃s)

(Agg + Aqq + . . .)
. (12)

Note that here unaccounted for processes, such as the above mentioned odd-order
in αs would add to the production rate incoherently, since they can be distinguished
by the presence of incoming/outgoing gluons. Thus the current calculation offers an
upper limit on the actual relaxation time, which may still be smaller. In any case,
the present result suffices to confirm that strangeness will be very near to chemical
equilibrium in QGP formed in collisions of large nuclei.

We show in Fig. 2 also the impact of a 20% uncertainty in ms(MZ), indicated by
the hatched areas. This uncertainty is today much larger compared to the uncertainty
that arises from the recently improved precision of the strong coupling constant de-
termination .6 We note that the calculations made 1 at fixed values αs = 0.5 and
ms = 200 MeV (dotted line in Fig. 2) are well within the band of values related to
the uncertainty in the strange quark mass.

Since charm is somewhat more massive compared to strangeness, there is still less
uncertainty arising in the extrapolation of the coupling constant. Also the systematic
uncertainty related to the soft gluons (odd-αs) terms are smaller, and thus the relax-
ation times τc we show in Fig. 3 are considerably better defined compared to τs. There
is also less relative uncertainty in the value of charm mass. We also show in Fig. 3
(dotted lines) the fixed mc, αs results with parameters selected to border high and low
T limits of the results presented. It is difficult to find a good comparative behavior
of τc using just one set of mc and αs. This may be attributed to the importance of
the mass of the charmed quarks, considering that the threshold for charm production
is well above the average thermal collision energy, which results in emphasis of the
effect of running charm mass. In the high T -limit the choice (upper doted line in
Fig. 3) mc = 1.5 GeV, αs = 0.4 is appropriate, while to follow the result at small T
(lower doted line in Fig. 2) we take a much smaller mass mc = 1.1 GeV, αs = 0.35 .

We recall that the equilibrium distribution is result of Boltzmann equation de-
scription of two body collisions. Thus the mass arising in the equilibrium density ρ∞

s

in Eq. (12) is to be taken at the energy scale of the average two parton collision. We
adopt for this purpose a fixed value m̃s = 200 MeV, and observe that in the range
of temperatures here considered the precise value of the mass is insignificant, since
the quark density is primarily governed by the T 3 term in this limit, with finite mass
correction being O(10%). The situation is less clear for charm relaxation, since the
running of the mass should have a significant impact. Short of more complete kinetic
treatment, we used mc ≃ 1.5 GeV in order to establish the reference density ρ∞

c in
Eq. (12).
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Figure 3: Solid lines: thermal charm relaxation constant in QGP, calculated for
running αs(MZ) = 0.115; 0.118, (indistinguishable), mc(MZ) = 700 MeV. Lower
dotted line: for fixed mc = 1.1 GeV, αs = 0.35; upper doted line: for fixed mc = 1.5
GeV, αs = 0.4 . Hatched area: effect of variation mc(MZ) = 700 ± 50 MeV

4 QGP Flavor Observable

We will indicate in this section how the study of flavor production impacts our un-
derstanding and diagnosis of the deconfined QGP phase. We recall first that there
are two generic flavor observable which we can study analyzing experimental data:

• yield of strangeness/charm:
once produced in hot early QGP phase, strangeness/charm is not reannihilated in

the evolution of the deconfined state towards freeze-out, and thus the flavor yield is

characteristic of the initial, most extreme conditions;

• phase space occupancy γs,c:
impacts distribution of flavor among final state particle abundances.

Given that the thermal equilibrium is established within a considerably shorter time
scale than the (absolute) heavy flavor chemical equilibration, we can characterize
the equilibration of the phase space occupancy by an average over the momentum
distribution:

γi(t) ≡
∫

d3p d3xni(~p, ~x; t)
∫

d3p d3xn∞
i (~p, ~x)

, i = s, c . (13)

The chemical equilibrium density is indicated by upper-script ‘∞’. When several
carriers of the flavor are present, as is the case in the confined phase, ni is understood
to comprise a weighted sum.
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In order to be able to compute the production and evolution of strangeness and
charm flavor a more specific picture of the temporal evolution of dense matter is
needed. Here, we will address specifically strangeness production in collisions at
CERN-SPS, up to 200 A GeV per nucleon. We use a simple, qualitative description,
simplified by the assumption that the properties of the hot, dense matter are constant
across the entire volume (fireball model). We consider radial expansion to be the
dominant factor for the evolution of the fireball properties such as temperature/energy
density and lifetime of the QGP phase. The expansion dynamics follows from two
assumptions:

• the (radial) expansion is entropy conserving, thus the volume and temperature
satisfy:

V · T 3 = Const. (14)

• the surface flow velocity is given by the sound velocity in a relativistic gas

vf = 1/
√

3 . (15)

This leads to the explicit forms for the radius of the fireball and its average temper-
ature:

R = Rin +
1√
3
(t − tin) , T =

Tin

1 + (t − tin)/
√

3Rin

. (16)

The initial conditions:

Tin = 320 MeV; Rin = 5.6 fm; tin = 1 fm/c; λq = 1.6; for Pb–Pb ,

Tin = 280 MeV; Rin = 4.7 fm; tin = 1 fm/c; λq = 1.5; for S–Pb/W ,

are derived from our exploration 8 of the equations of state of QGP: the radius Rin has
been determined such that the baryon number content in the fireball is 380 (Pb–Pb
case) and 120 (S–Pb/W case) respectively, corresponding to ‘zero’ impact parameter
collisions.

In the fireball in every volume element we have:

ns(~p; t) = γsn
∞

s (~p; T, µs) . (17)

In this limit and allowing for the detailed balance reactions, thus re-annihilation of
flavor, the yield is obtained from the equation:

dNs(t)

dt
= V (t)As

[

1 − γ2
s (t)

]

. (18)

Allowing for dilution of the phase space density in expansion, we derive 7 from Eq. (18)
an equations describing the change in γs(t):

dγs

dt
=

(

γs

Ṫms

T 2

d

dx
ln x2K2(x) +

1

2τs

[

1 − γ2
s

]

)

. (19)
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Here K2 is a Bessel function and x = ms/T . Note that even when 1 − γ2
s < 1 we

still can have a positive derivative of γs, since the first term on the right hand side of
Eq. (19) is always positive, both Ṫ and d/dx(x2k2) being always negative. This shows
that dilution due to expansion effects in principle can make the value of γs rise above
unity.

Given the relaxation constant τs(T (t)), these equations can be integrated nu-
merically. We found 7 in analysis of S-W collisions at 200A GeV γexp

s ≃ 0.75, and
moreover, for S–Ag collisions at 200A GeV a recent evaluation of the specific strang-
eness yield leads to Ns/B|exp = 0.86 ± 0.14 (see table 4 of Ref. 10). Both results are
well reproduced within our simple dynamical model .7

Assuming that the model we proposed is thus tested at 200 A GeV, we compute
the strangeness yield and phase space occupancy as function of energy. This allows
to evaluate the strange (anti)baryon yields from QGP as function of collision energy.
We note that at fixed m⊥ the medium dependent factor controlling the abundance of
hadrons emerging from the surface of the deconfined region is related to the chemical
conditions in the source, and for strange quarks, there is also the occupancy factor γs

to be considered:

nh|m⊥
= e−m⊥/T

∏

k∈h

γkλk . (20)

The strange quark fugacity is in deconfined phase unity, while the light quark fugacity
evolution with energy of colliding ions follows from our earlier studies .8 In Fig. 4. we
have normalized all yields at ELab = 158A GeV. Remarkably, all antibaryon yields
(left hand side of Fig. 4) cluster together (solid lines: (anti)nucleons, long dashed:
(anti)hyperons, short-dashed: (anti)cascades, and dotted: (anti)omegas), thus as
long as the QGP phase is formed, ratios of rare multi strange antibaryons should not
change significantly while the collision energy is reduced, until the QGP formation
is disrupted. It should be noted that the yield of Ω remains appreciable, all the way
even at very small energies — this is the case as long as these particles are produced
by the deconfined phase, rather than in individual hadronic interactions. For baryons
(right hand side of Fig. 4) there is considerable differentiation of the yield behavior:
the reference yield of nucleons remains constant, as it is intuitively expected, but the
yield of more strange baryons decreases with energy.

5 Final Remarks

Using QCD renormalization group methods we have studied the flavor (s, c) chem-
ical equilibrium relaxation times. We have shown that the newly measured QCD
coupling constant comprises sufficiently small uncertainty to allow precise evaluation
of strangeness production at and below 1 GeV energy scale. Our study has further
proven that it is essential to incorporate in the evaluation of flavor production rates
both running mass and running coupling constant.

We find that running of the QCD parameters is of major significance, since, e.g.,
the effective charm production mass is considerably reduced, seen on the scale of
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Figure 4: Relative yields of antibaryons (left) and baryons (right) as function of heavy
ion collision energy ELab. Abundance set to a common value (unity) at ELab = 158A
GeV. Solid lines nucleons, long dashed Λ + Σ0, short dashed Ξ, dotted Ω.

available thermal energies. We found considerable enhancement of charm production
for temperatures applicable at SPS collision energy, compared to fixed mass results.
While charm experiences at low temperature T ≃ 200 MeV a 100 times slower ap-
proach to chemical equilibrium compared to strangeness, for temperatures of about
500 MeV, as may apply to the conditions generated at LHC or perhaps even RHIC
colliders, τc → 30 fm, which is within factor two of the expected maximum lifespan
of the deconfined state. Thus our calculations suggest that there will be a significant
abundance of thermal charm in nuclear interactions at RHIC/LHC. In consequence,
open charm should play a similar role in the diagnosis of the ‘hot’ T ≃ 500 MeV
deconfined state as strangeness is playing today for the ‘cold’ T ≃ 250 MeV case, and
charm equilibrium appears within reach of the extreme conditions possibly arising at
LHC.

Our here presented and other results 7 imply that in key features the strange
particle production results obtained at 160–200A GeV, are consistent with the QGP
formation hypothesis. However, in order to ascertain the possibility that indeed the
QGP phase is already formed today, a more systematic experimental exploration as
function of collision energy of the different observable is required, for which purpose we
also have explored the collision energy dependence of the most characteristic strange
particle features expected from the QGP phase.
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